Transportation Emissions Research and Regulations in the Face of Rapid Technology Changes

SEMINAR – June 7, 2024, 10 AM Central

Transportation Emissions Research & Regulations in the Face of Rapid Technology Changes

> Imad Khalek, PhD, FSAE Institute Engineer

Imad.Khalek@swri.org

POWERTRAIN ENGINEERING

Southwest Research Institute San Antonio, Texas USA

~ 3,200 employees; 4.8 km²; 170 Buildings; 159,000 m² of laboratory/office space; FY2023 Revenue of \$844 Million

Benefiting government, industry and the public through innovative science and technology

10 Technical Divisions: Deep Sea to Deep Space

Applied Physics Applied Power Center for Nuclear Waste Regulatory Analyses Chemistry & Chemical Engineering Defense & Intelligence Solutions Fuels & Lubricants Research Intelligent Systems Mechanical Engineering Powertrain Engineering Space Science & Engineering

Topical Coverage

- Heavy-Duty Diesel Engine Particle Emissions
- Light-Duty Gasoline Engine Particle Emissions
 - New Euro 7 regulations
 - New Tier 4 US Regulations
- H₂ ICE is not particle-free
- Brake & Tire Particle Emissions
 - New Euro 7 Regulations
- Li Ion Battery Fire
 - Fire Fighters and Public Concern
- New PM2.5 Ambient Standard
- Closing

Emissions Reduction & Modern Diesel Engine (Chemical Plant in Engine Exhaust)

The MORE Modern Diesel Engine (MORE of a Chemical Plant in Engine Exhaust)

Diesel Engine Impressive Particulate Matter (PM) Emissions Reduction

- 90 percent reduction in PM emissions was mandated by US EPA for 2007 heavy-duty diesel engines and beyond
- High efficiency catalyzed wallflow DPF technology selected by the engine manufacturers achieved more than 99 percent reduction in PM mass emissions relative to 1998 engine technology
- The composition of the PM left is dominated by organic & inorganic semivolatile/volatile compounds

Future Standard of 0.005 g/hp-hr (2024-2027)

Diesel Engine is an Ambient Air Cleaner for Solid Particles Down to 10 nm

At 99.9% efficiency, solid exhaust particle concentration can be on the order of 500-5,000 particle/cm3 for diesel.

Particle size class	Particle size range	Particle number before filter	Particle number after filter	Penetration [%]	Filtration efficiency [%]
1	15.4	1.33E+05	0.00E+00	0.000%	100.000%
2	20.5	6.93E+05	1.96E+02	0.028%	99.972%
3	27.4	2.01E+06	2.39E+02	0.012%	99.988%
4	36.5	4.20E+06	6.62E+02	0.016%	99.984%
5	48.7	6.49E+06	6.60E+02	0.010%	99.990%
6	64.9	8.36E+06	5.69E+02	0.007%	99.993%
7	86.6	8.82E+06	5.23E+02	0.006%	99.994%
8	115.5	7.60E+06	2.86E+02	0.004%	99.996%
9	154	5.30E+06	2.19E+02	0.004%	99.996%
10	205.4	2.82E+06	1.89E+02	0.007%	99.993%
11	273.9	8.80E+05	2.45E+02	0.028%	99.972%
overall		4.63E+07	3.54E+03	0.008%	99.992%

Significant Unregulated Emissions Benefit

Compounds	% Lower Than 2004 Engine Technology				
	16-Hour Cycle	CARBx-ICT			
Single Ring Aromatics	82%	69%			
PAH	79%	26%			
Nitro-PAH	81%	49%			
Alkanes	85%	84%			
Polar	81%	12%			
Hopanes/Steranes	99%	99%			
Carbonyls	98%	78%			
Inorganic lons	38%	100%			
Metals and Elements	98%	90%			
Organic Carbon	96%	78%			
Elemental Carbon	99%	100%			
Dioxins/Furans ^a	99%	N/A			
* Relative to 1998 E	Engine Technology				

Due to the presence of exhaust SCR catalyst for NOX reduction in 2010 engines, NO_X as well as NO_2 are at least 90% lower than 2004 technology engines

Reduction in Secondary Organic Aerosol Formation

Robinson et al., 22nd CRC Real World Emissions Workshop, San Diego, CA, March 25-28, 2012

Three Problem Areas Arise from using Exhaust Filters

- 1. Volatile particle formation during regeneration
 - 1. Sulfuric acid is the trigger. We need ZERO sulfur fuel
- 2. Ash loading on the filter, raising backpressure & require infrequent manual cleaning
 - 1. Lube oil ash is culprit. We need ASHLESS lube oil
- 3. In-use failure (cracks, leaks, tampering, etc..)
 - 1. We need continuous emissions monitoring via sensors to tackle this issue
 - 1. SwRI has been working on particle sensors for onboard monitoring through SwRI Particle Sensor Performance & Durability (PSPD) consortium since 2011

https://www.swri.org/swri-automotivewebinar-obd

Diesel Exhaust Summary

- Drastic reduction in tailpipe NOx emissions is coming in 2027
- Diesel engines equipped with high-efficiency DPF can clean the air from solid particles
- Formation of sub 30 nm volatile particles that is high in number
- Ash in lube oil
- Tampering
 - ~2% of heavy-duty vehicles inspected in California were recently cited for tampering with the exhaust aftertreatment system
 - If exhaust filter is removed, each vehicle will emit as much as 1000 vehicles with filters
- New regulations will cut PM emissions by 50%. This should not impact heavy-duty onhighway engine, but it will force nonroad engines to use DPF
- Renewable & Biofuels (not covered) can play a drastic role in reducing GHG emissions on a life cycle analysis basis.

Light-Duty Gasoline Vehicles-Current Regulations

- CARB LEV III and US Tier 3 Regulations (Particle Mass Only)
 - No Gasoline Particle Filter (GPF) required

CARB LEVI III only

- Euro 6 (Solid Number and Mass)
 - 4.5 mg/km
 - 6 x 10¹² part/km (2014-2016)
 - 6 x 10¹¹ part/km in 2017 for Particle > 23 nm (~50% below 2025 CARB LEV III)
 - GPF required for Euro 6 starting 2017

Light-Duty-New Particle Regulations

- US EPA Tier 4.....2032+
 - PM mass at 0.5 mg/mi (~ equivalent to EU in 2017)
 - Vehicles likely to require a GPF because the regulation applies at -7 °C
- Euro 7.....2030-2032+
 - Solid Particle Number Emission is at 6x10¹¹ part./km for particles > 10 nm. This applies to all vehicle types.
 - More stringent than Euro 6
 - US Direct injection gasoline engines emits much high PM compared to EU between 2017-2032

Madal		US	EPA		CARB				
Year	FTP, - 7°C	FTP, 25°C	US06, 25∘C	Phase In	FTP, - 7°C	FTP, 25°C	US06, 25∘C	Phase In	
2024	N/A	3	6	Tier 3	N/A	3	6	Tier 3	
2025	N/A	3	6	Tier 3	N/A	1	6 ^b	25%	
2026	N/A	3	6	Tier 3	N/A	1	6 ^b	50%	
2027	N/A	3	6	Tier 3	N/A	1	6 ^b	75%	
2028	N/A	3	6	Tier 3	N/A	1	6 ^b	100%	
2029	N/A	3	6	Tier 3	N/A	1	6 ^b	100%	
2030	N/A	3	6	Tier 3	N/A	1	6 ^b	100%	
2031	N/A	3	6	Tier 3	N/A	1	6 ^b	100%	
2032	0.5 ^a	0.5 ^a	0.5 ^a	Tier 4	0.5 ^a	0.5 ^a	0.5 ^a	Tier 4	

Emissions Cap, ^b No Phase in

Approaches to Meeting US Tier 4 PM Standards : Gasoline Particle Filter (GPF)

- EPA demonstrated meeting the standard in the Draft Regulatory Impact Analysis (DRIA) using GPFs
- PM emissions reported well below 0.5 mg/mi with new technology GPFs
- GPF was shown to decrease PAHs and off-cycle emissions

25°C FTP

Ω

-7°C FTP

US06

Other Possible Approaches to Reduce PM/PN, WLTC, E-Fuel

• One can get significant reduction in all particle metrics using E-Fuel with ultra low PM Index (PMI)

$$PM Index = \sum_{i=1}^{n} \left(\frac{DBE_i + 1}{V.P(443K)_i} \times Wt_i \right)$$

	EPA Tier 3 Cert Fuel, PMI 2.4							
Test Name	Soot Mass	SPN23	SPN10	Ash	PM	EEPS	SPN10-SPN23	
F1, mg/#/kW-hr	55.71	6.9E+13	1.1E+14	9.9E+12	79.7	2.3E+14	3.9E+13	
Stdev, mg/#/kW-hr	4.38	5.9E+12	1.4E+13	7.7E+11	5.3	3.1E+13		
COV, %	0.08	8.6E-02	1.2E-01	7.8E-02	0.1	1.3E-01		
	% Change Relative to EPA Fuel							
	CARB LEV III Cert Fuel, PMI 1.23							
F2	-42.6%	-51.1%	-16.4%	-38.2%	-34.4%	25.1%	44.2%	
	E-Fuel with Ultra Low PMI of 0.27							
F3	-95.3%	-86.0%	-84.3%	-87.3%	-91.2%	-74.0%	-81.2%	

- 2018 Ford Ecoboost, turbocharger, direct injection engine
- 2.3 L, 310 hp/350 ft.lb torque at 3,000 rpm
- Used in MY 2018 Ford Mustang

SwRI

Drop-in E-Fuel with Ultra Low PMI can benefit existing fleet by reducing PM/PN emissions and greenhouse gas

Other Combustion Sources-High on Number, Low on Mass

- Natural Gas ICE
 - Large number of solid particles below 23 nm in diameter-Lube Oil Ash
- H₂ ICE
 - Similar findings in H2 ICE and other soot-free or low soot emitting engines
- Jet Engines
 - Large number to mass ratio, compared with diesel and gasoline (two orders of magnitude higher)

Gasoline Exhaust Summary

- Gasoline engine particle emissions are much more stringent in the EU than the USA
- US EPA does not regulate on particle number (PN) and continue to focus on PM mass
 - US EPA regulates PN only for aircraft engines
- Particle number metric is different than the mass metric
 - We could see cases of very low PM mass but high particle number
 - PFI Gasoline, natural gas, H₂-ICE & others

Should the US regulate particle emissions using the number and mass metrics. The number metric is already used for aircraft, why not for automotive?

Other Outstanding Elephant in the Room New Particle Emissions Issues

- Brake Particle Emissions
- Tire Abrasion
- Euro 7 includes brake emissions and tire abrasion
 - Brake emissions cycle has been developed and completed
 - Tire abrasion method has been finalized
- No US regulations in the horizon on brake and tire emissions
 - Interest is there

Brake and Tire Wear Expected to Dominate PM Emissions from Mobile Sources

- Diesel and Gasoline Exhaust Particulate Filters (DPF & GPF) have SIGNIFICANTLY reduced exhaust PM. Tire & Brake PM become DOMINANT emitters
- EV may be Worse than ICEV

Comparison between expected PM_{2.6} emissions of EVs. gasoline and diesel ICEVs.

FIGURE 8. EXHAUST, BRAKE AND TIRE PM10 AS PROJECTED BY MOVES IN USA

¹⁷ Koupal et al., "New Research on Brake Wear Particulate Matter Emissions from Several Heavy-Duty Truck Vocations in California," 32nd CRC Workshop, March 13-16, 2022.

	2						outprovide and	Exception lists evaluation at holescolingation
Vehicle technology	Exhaust	Tyre wear	Brake wear	Road wear	Resuspension	Total	231	Atmospheric Environment
EV Gasoline ICEV Diesel ICEV	0 mg/vkm 3.0 mg/vkm 2.4 mg/vkm	3.7 mg/vkm 2.9 mg/vkm 2.9 mg/vkm	0 mg/vkm 2.2 mg/vkm 2.2 mg/vkm	3.8 mg/vkm 3.1 mg/vkm 3.1 mg/vkm	14.9 mg/vkm 12.0 mg/km 12.0 mg/vkm	22.4 mg/vkm 23.2 mg/vkm 22.6 mg/vkm	Review article Non-exhaust P! Victor RJH. Timme	M emissions from electric vehicles

Near Roadway PM Composition in California

Lopez et al., "Elemental Content of Brake and Tire Wear PM2.5 and PM10 at Near-Road Environments" CRC Real World Emissions Workshop, 2023

Euro 7 Light-Duty Brake Particle Emissions

- Brake emissions limit at 7 mg/km for ICE starting in ~2027
- 3 mg/km for EVs starting in ~2027
- 3 mg/km for all powertrains starting in 2035

Euro 7 Tire Emissions (Abrasion)

- Conduct a review on tire abrasion before 2025 and define a limit by mid-2026 through the UN WP.29
 - Objective is to reduce microplastics by 30% by 2030

2023 Brake Colloquium & Exhibition

Euro 7 Tutorial

Brake and Tire Particle Emissions Summary

- Brake and Tire Particle Emissions will dominate going forward
- The EU has developed a standard for Brake emissions and work in progress on tire abrasion
- No regulations on the horizon in the USA yet

Other Non-Exhaust Safety Concern- EV BATTERY RUNAWAY FIRE

- Lithium-ion (Li-ion) batteries are widely used due to their high energy density and specific energy capacity – which makes them a safety concern
- There have been several battery fire incidents in the last few months
- Critically important to understand emissions to equip first responders with appropriate PPE, understand human and environmental impact
 - Especially with rapid electrification in the mobility sector
- Significant release of particulate and gaseous emissions were observed during thermal runaway
 - Particles were in the respirable size range with peak levels in the ultrafine size scale (sub 100 nm)

Vinay Premnath, Yanyu Wang, Nolan Wright, Imad Khalek & Steven Uribe (2022) Detailed characterization of particle emissions from battery fires, Aerosol Science and Technology, 56:4, 337-354, DOI: <u>10.1080/02786826.2021.2018399</u>

LFP overcharge

Background PM filter

PM Filter for Test 4

Single small battery fire event can emit **4 orders of magnitude** higher particle number than a heavy-duty truck engine or equivalent to **one million miles of truck operation!**

Li Battery Runaway Fire

- Topic is an important health concern due to the highly concentrated exposure in a short period of time
- We are currently doing more work on this subject with support from TEEX
 - Detailed Emissions Characterization of Battery Fire
 - PM mass, soot mass, size and number
 - Metals and SVOCs
 - Gases
 - Fire fighter gear exposure & analysis

Final Thoughts

• With the more stringent EPA ambient $PM_{2.5}$ standard at 9 μ g/m^{3,} some of the sources discussed here will contribute to nonattainment zones that will likely be identified in late 2025.

Questions

Imad A. Khalek Southwest Research Institute Imad.Khalek@swri.org

