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Executive Summary 
Background and introduction: A health impact assessment (HIA) is a systematic process used to evaluate the 
potential health effects of a policy, program, or project on a population. It provides evidence-based 
recommendations to decision-makers to protect and promote public health. Given the increasing concerns about 
environmental health, especially related to air pollution, the HIA has become a crucial tool for policymakers. This 
project built upon previous work by Texas A&M Transportation Institute researchers that assessed the health 
impacts of automated vehicles and the use of high spatial resolution data for health impact assessment of traffic-
related air pollution. 

Objective: The primary goal was to create a comprehensive framework, implemented as an R Shiny application, to 
assess the health impacts of air quality changes. This framework aims to simplify the complex processes involved in 
HIAs, making them accessible to a broader audience, including researchers, policymakers, and the public. 

Framework features: Notable features of the framework include the following: 

• Holistic integration: Covers the entire HIA process. 
• User-centric design: Provides an intuitive interface for ease of use. 
• Flexibility: Handles diverse data sources and formats. 
• Transparency: Provides a clear understanding of underlying assumptions and calculations. 

Implementation: The framework was developed using the R programming language as an R Shiny application. It 
offers a step-by-step process, from data input to results visualization, allowing users to conduct a full-chain health 
impact assessment seamlessly. 

Application structure: The application is divided into five main tabs: 

1. Preprocessing. 
2. Input. 
3. Run AERMOD. 
4. Visualize results. 
5. Health impact analysis. 

Each tab serves a specific purpose, guiding users through the modeling chain, from preprocessing emissions and 
traffic data to visualizing results and comparing different scenarios. 

Results—Case study: The North Central Texas Council of Governments travel demand model network was used as 
a case study to test the R Shiny application. The study involved various stages, from preprocessing traffic data to 
modeling emissions and dispersions to assessing health impacts. The results showed a significant reduction in the 
concentrations of particulate matter that is 2.5 microns or smaller in 2026 compared to 2019, leading to a 
decrease in premature deaths. 
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1 Background and Introduction 
This project leveraged previous work conducted by Texas A&M Transportation Institute researchers related to a 
full-chain health impact assessment of automated vehicles (AV) through changes in air quality and the use of high 
spatial resolution data for a health impact assessment of traffic-related air pollution in a large area. The first study 
focused on evaluating AV through a health lens while the second study further contributed to the traffic-related air 
pollution HIA exercise by focusing on methodological issues, specifically studying the potential impacts and 
applications of using datasets of higher spatial resolution as part of the process. 

The activity used in the study was based on the old Dallas-Fort Worth travel demand model (TDM) for the year 
2018 received from the North Central Texas Council of Governments (NCTCOG) through an email correspondence, 
and emission rates were based on the older Motor Vehicle Emission Simulator (MOVES) model (USEPA, 2022). 
MOVES31 is the Environmental Protection Agency’s (EPA’s) latest mobile source emission model, which estimates 
less exhaust particulate matter (PM) with a diameter smaller than 2.5 microns (PM2.5) compared to previous 
versions of the model due to decreased extended idling activity and lower heavy-duty emission rates (USEPA, 
2023). Also, MOVES3 has a better representation of PM emissions resulting from brake and tire wear. Moreover, 
the previous models did not consider resuspended dust, which is a significant source of PM2.5 emissions.  

A complex modeling chain, involving the following components, is required to simulate the dispersion of 
transportation-related emissions from the tailpipe of the car to the lungs of an individual:  

• Traffic modeling: Estimates the traffic volumes, speeds, and driving patterns. 
• Emission modeling: Estimates the emissions associated with the traffic patterns.  
• Dispersion modeling: Estimates the transport of the emissions into the atmosphere based on the physical 

forces and chemical reactions.  
• Exposure modeling: Estimates the amount of pollution an individual is exposed to based on the strength 

and duration of exposure. 
• HIA: Estimates the mortality burden or risk of disease based on exposure to a particular pollutant. 

Estimating accurate transportation emissions is a vital task in an HIA. The EPA recommends using local activity and 
emission rates for developing transportation emissions. The emissions generated at the link level were used as the 
input for dispersion modeling to estimate the concentration at finer scales, such as a traffic analysis zone, 
neighborhood zip code, or hot spot like an intersection. The refined concentration and exposure findings can then 
be used to estimate the health risk by employing the Centers for Disease Control and Prevention (CDC) and EPA 
datasets.  

The error or inaccuracy in the HIA modeling chain can arise from any of the steps identified previously and may 
result in an underestimation or overestimation of the local risk. The proposed study focused on developing a 
framework to improve the emissions and dispersion modeling estimates by using the latest available network and 
local data to develop the activity and emission rates that are needed to predict health risks. 

2 Problem Statement 
HIA modeling is a systematic process that evaluates the potential health effects of a policy, project, or program. At 
its core, the HIA modeling chain begins with the collection of data on the sources and amounts of pollutants being 

 
1 MOVES3 was the latest emission model available when the project started in the late 2022 calendar year. 
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released into the environment, known as the emissions inventory. This foundational step is crucial as inaccuracies 
or omissions at this stage can lead to critical errors in subsequent steps. 

Following the emission inventory, the process delves into air quality modeling. Here, mathematical models are 
employed to predict how pollutants will disperse in the atmosphere both spatially and temporally. The accuracy of 
these predictions hinges on the quality of the model, the input data, and a comprehensive understanding of 
atmospheric processes. 

Once the dispersion of pollutants is understood, the next step is exposure assessment. This step determines the 
extent and duration of human exposure to these pollutants, taking into account factors like population density, 
activity patterns, and pollutant concentrations. However, it is often challenging to account for individual variations 
in exposure, resulting from factors such as time spent indoors versus outdoors or activity levels among individuals. 

Building upon the exposure assessment, health impact functions are then applied. These functions establish 
relationships between exposure levels and specific health outcomes, such as respiratory diseases or premature 
deaths. Establishing clear cause-and-effect relationships between pollutants and health outcomes can be difficult, 
especially when considering long-term effects or the interactions between multiple pollutants. 

The final step in the HIA modeling chain is risk characterization. This step synthesizes the data from the previous 
stages to estimate the overall health impact in terms of morbidity, mortality, or other relevant metrics. This stage 
requires the integration of diverse data sources and often involves making assumptions or estimations, which 
introduces potential uncertainties. 

While the HIA modeling chain is a powerful tool, it is not without its challenges. The accuracy of the entire 
modeling process is only as good as the data provided; incomplete or outdated emission inventories can skew 
results. Moreover, no model can perfectly replicate the complexities in the real world; simplifications and 
assumptions are inevitable, leading to potential inaccuracies. Additionally, external factors like climate change, 
socioeconomic shifts, or changes in healthcare infrastructure can influence health outcomes but might not always 
be considered in the HIA. 

3 Approach 
The evolution of HIA methodologies has paved the way for the development of our proposed framework. This 
framework is not just a tool, but an integrated system designed to bridge the gaps often found in traditional HIA 
processes. It seeks to provide a comprehensive solution for assessing the health impacts of air quality changes, 
ensuring that every step, from data input to results interpretation, is seamless, accurate, and user-centric. 

The primary objective of this framework is to ease the way HIAs are conducted. It aims to simplify the complex 
processes involved, making them more accessible to a wider range of stakeholders, from researchers and 
policymakers to the public. Our vision was to create a platform where data-driven insights can be generated with 
precision, and results can be visualized intuitively, fostering informed decision-making. 

At the core of the framework is its integrated workflow. Users initiate the process by uploading their datasets, 
including the TDM, emission inventories, meteorological data, population demographics, and health metrics. The 
system was designed to handle diverse data sources to ensure its flexibility and adaptability. 

Once the data are uploaded, the framework begins a series of computational processes. It starts with the 
preparation of emissions data for different roadway links in a manner suitable for air quality modeling. Users can 
compare different scenarios at this preprocessing step to ensure the accuracy of the input data. The next step 
involves preparing the input files required for air quality modeling using AERMOD, a regulatory model developed 
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by the American Meteorological Society and EPA to predict the dispersion and concentration of pollutants in the 
atmosphere. Once the AERMOD input files are prepared, the framework helps users run AERMOD without leaving 
the user interface. In the next step, the tool has built-in post-processing scripts to extract the data from the 
AERMOD outputs and visualize the data on a map or as a time series. Also, users can compare the results from 
different scenarios.  

Following this activity, the exposure assessment is performed. Here, the framework calculates the extent of human 
exposure to the predicted pollutant concentrations. It considers various factors, such as population density, 
activity patterns, and the geographical distribution of pollutants, to determine a population-weighted average 
concentration of the pollutant at the census tract level. This granularity ensures that the exposure metrics 
generated are not just averages but are representative of actual population exposures. Building on the exposure 
data, the framework then applies health impact functions. These functions, derived from epidemiological studies, 
correlate specific pollutant exposure levels with overall mortality.  

One of the standout features of the proposed framework is its emphasis on visualization. Recognizing that raw 
data or tables can often be overwhelming, the platform offers interactive visual tools. Users can explore the health 
impacts spatially through detailed maps, observing how impacts vary across regions. Time series charts allow users 
to see how impacts change over time, providing insights into both short-term and long-term effects. 

Additionally, the framework offers real-time feedback. As users adjust parameters or input new data, the 
visualizations update instantly, allowing for more dynamic exploration and hypothesis testing. 

3.1 Advancements Over Previous Models 
Several factors set this framework apart from its predecessors: 

• Holistic integration: By encompassing the entire HIA process, from data input to results visualization, the 
framework eliminates the disjointedness often found in traditional methods. 

• User-centric design: The platform was designed with usability in mind. Its intuitive interface ensures that 
even those without a deep understanding of HIAs can navigate and derive insights. 

• Flexibility: The system’s ability to handle diverse data sources and formats ensures it can be applied in 
various scenarios, regions, or research contexts. 

• Transparency: Every step in the process is transparent, allowing users to understand the underlying 
assumptions, models, and calculations. This transparency fosters trust and facilitates stakeholder 
engagement. 

In essence, the proposed framework is more than just a tool; it is a comprehensive solution that seeks to make 
health impact assessments more accurate, understandable, and actionable. 

4 Implementation 
The framework was developed using the R language in the form of an R Shiny application. R Shiny is a powerful 
tool for creating interactive web applications directly from R scripts. It allows for real-time data processing and 
visualization, making it an ideal platform for our health impact assessment framework. 

The developed R Shiny application serves as an interactive platform for users to conduct a full-chain health impact 
assessment. The application was designed hierarchically, where the output from one tab feeds into the next, 
allowing users to progress through the modeling chain seamlessly.  
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The application boasts a clean and intuitive design, ensuring ease of use, as shown in Figure 1. The sidebar layout is 
consistently used across all tabs, with input elements on the left and output visualizations on the right. The design 
also incorporates conditional panels, which dynamically adjust based on user actions, such as adding a second 
scenario for comparison. 

 
Figure 1. User interface of the health impact assessment framework. 

The application is divided into five main tabs: 

1. Preprocessing. 
2. Input. 
3. Run AERMOD. 
4. Visualize results. 
5. Health impact analysis. 

The tabs were designed in a hierarchical order starting from left to right with the output of the tab on the left 
feeding into the next tab. The hierarchical design ensures a logical flow, guiding users step-by-step through the 
modeling chain. Action buttons are strategically placed to prompt users to move to the next step, and download 
buttons allow users to save their processed data at any stage. The application also provides real-time visual 
feedback, such as plots and maps, enhancing user engagement and understanding.  

Sections 4.1–4.5 describe each of the tab’s functionalities in detail. 

4.1 Preprocessing Tab 
The preprocessing tab (Figure 2) is the initial step where users can preprocess the emissions and traffic data, 
estimate emissions, create geographical projections, and have the inputs converted into a format suitable for the 
AERMOD. Here, users can input distinct scenario names to add more clarity to their projects. Uploading the source, 
flow, and rate files becomes a seamless task, ensuring that all necessary data are at their fingertips. One of the 
standout features is the ability to visualize emission rates on an hourly basis, providing a granular view of the data. 
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If users wish to draw comparisons, they can effortlessly add a second scenario, making comparative analysis 
straightforward.  

 

 
Figure 2. User interface and functionality of the emission data processing tab. 

The key points to keep in mind when using the preprocessing tab include the following: 

• The sources file should contain details about each emission source, including its location (start and end 
points), speed, number of lanes, and area type. The identification code (ID) is crucial as it links data across 
different files. 

• The flow file provides flow data for different hours and directions for each source. The ID in this file 
should match the source file. 

• The rates file contains emission rates for different pollutants based on the road description and average 
speed. 

• Once the data are uploaded and processed, the framework will generate a box plot visualizing the hourly 
emission rates. This visualization helps in understanding the distribution of emission rates and comparing 
them between different scenarios. 
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• Users can download the processed data for further analysis or recordkeeping. 

4.2 Input Tab 
The input tab (Figure 3) has a user-friendly interface designed to streamline the processing of source, receptor, and 
template data. By simply uploading their respective data files, users can rely on the system to automatically 
generate the necessary AERMOD input format. This seamless integration is further enhanced by the platform’s 
visualization capabilities. Here, users can actively view the spatial distribution of their sources and receptors on a 
map, providing a more interactive and comprehensive understanding of their data. 

 
Figure 3. User interface and functionality of the input tab. 

For the data upload and reading process, the platform is equipped to handle various data types. Users can upload 
a comma-separated values (CSV) file containing their source data (generated from the output of the previous tab), 
which the system efficiently reads using R’s read.csv function. Similarly, the receptor data, also in CSV format, is 
converted into the receptor data frame table. Furthermore, the option exists to upload a template file. This file 
acts as the foundational structure for generating the AERMOD input. It is filled with placeholders that the system 
intelligently replaces with the actual data. A sample template file is provided with the R code for easy editing.  

When users click on the Generate AERMOD Input button, the framework edits the template file based on the 
source and receptor tables. For receptors, the system identifies a specific placeholder line in the template and then 
formats the receptor data into the AERMOD format using the sprintf function. This formatted data then takes the 
place of the placeholder in the template. The source data, on the other hand, undergoes a three-step processing 
sequence. Initially, the system formats the source location data, which includes start and end coordinates. 
Subsequently, emission factors for each source are formatted, followed by the hourly emission data for each 
source. Each of these formatted sections finds its place in the template, replacing its respective placeholder. 

The tool automatically generates visualizations as users upload the data. As soon as the source data are uploaded, 
a map is generated, showcasing the spatial distribution of the sources as line segments. This map not only provides 
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a visual representation but also helps to quality check the data spatially. With the upload of the receptor data, the 
map evolves to display receptor locations, marked distinctly as points. 

As a final step of the input tab, users are presented with an option to download this data in the AERMOD input 
format. With a click, a file named AERMOD_Input.txt is generated, containing all the processed data. 

Also, recognizing the importance of feedback during data-intensive operations, a modal dialog appears with the 
message Processing data... Please wait. This simple yet effective feature ensures users are always in the loop, and 
aware that their data are undergoing processing. 

4.3 Run AERMOD Tab 
As shown in Figure 4, the run AERMOD tab serves as a dedicated platform for executing the AERMOD for air 
dispersion. Users can specify both the input file and the directory containing the AERMOD executable. The system 
was designed to seamlessly run the AERMOD and the console output will be readily available for users to review. 

 
Figure 4. User interface and functionality of the run AERMOD tab. 

The AERMOD execution function, termed run_aermod, was designed to accept various input parameters, including 
the path to the AERMOD input file, the desired name for the output file, the directory housing the AERMOD 
executable, and a Boolean flag to determine the return type of the modeling results. First, the function verifies the 
presence of the aermod.exe file in the designated directory. The function prepares an input file for AERMOD based 
on the input provided, which can be either a text string, file path, or data frame. It then builds a shell command 
that directs to the directory containing the aermod.exe file and subsequently executes it. After the AERMOD run, 
the output file is saved in the working directory, which can be renamed as per the user’s preference. If the silent 
flag is deactivated, the function will also read and return the modeling results. 

Through the capture_console_output function, the system ensures that as AERMOD runs, the console output is 
captured. This real-time feedback mechanism allows users to monitor progress and instantly view any messages or 
errors that may be generated during the AERMOD run. 

By clicking the Run AERMOD button, a series of systematic steps are initiated. First, a modal dialog window 
informing users with a Running AERMOD... Please wait message emerges. The system then activates the console 
output to capture the functions. It then verifies if users have selected a directory and then constructs a path to the 
AERMOD input file within the selected directory. With everything in place, the run_aermod function is called, 
which executes AERMOD with the specified parameters. Upon completion, the modal dialog window disappears. 

4.4 Visualize Results Tab 
As shown in Figure 5, the visualize results tab helps users extract the modeling results from the AERMOD output 
file and visualize the data. This tab helps interpret the outcomes of the AERMOD results. Also, the tab helps users 
do a comparative analysis between two distinct scenarios. 
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Figure 5. User interface and functionality of the visualize results tab. 

The system employs a read_pos function to handle the post-processed data. This function reads the entire post file 
generated by the AERMOD run, filters relevant data lines based on specific patterns, and formats these lines into a 
singular text block. The data are then stored in a data table. 

Next, the process_pst_file function reads the post-processed data and splits the date and hour for clarity. To 
expedite the processing, parallel processing was leveraged to harness the power of multiple cores. For every 
unique date-hour combination, the function transforms data to align with specific coordinate systems, defines a 
bounding box by analyzing the geographical extent of all the receptors in the data, and crafts a grid based on the 
user’s input ranging from 250 m to 1,000 m. The inverse distance weighting method is then used for spatial 
interpolation of the results and the data are visualized on a map. For each map, the visuals of each date-hour 
combination are saved as an image file in the same folder as the R Shiny application. Once all the processes are 
completed, the parallel processing setup shuts down. 

The system was designed so that the user's interaction with it would be streamlined and intuitive. When users opt 
to generate maps for individual scenarios via the Generate Maps button, a modal dialog window signaling data 
processing will appear. The process_pst_file function is then called to process and visualize data for the chosen 
scenario. A console message confirms the map generation, and the modal dialog recedes. 

For users seeking to compare the analysis between two scenarios, they can click on the Add Scenario 2 button, 
which will tell the system to execute the process_pst_file function twice, once for each scenario. Once they upload 
results from both scenarios, a box plot appears comparing the two scenarios temporally by the hour. A t-test for 
each hour will be performed and the results will be represented on top of each hour. The plot helps users compare 
the effect of different interventions undergone for a particular scenario and determine whether those 
interventions have brought statistically significant changes in pollutant concentrations.  

4.5 Health Impact Assessment Tab 
As shown in Figure 6, the health impact assessment tab helps users understand the intricate relationship between 
air quality changes and health impacts. Designed with precision, this tab delves deep into the data of baseline and 
control scenarios, merging them with population metrics to deduce the number of premature deaths that could be 
averted due to shifts in PM2.5 concentrations. The results from the analysis are visualized on an interactive map, 
and users can download the results in a CSV format for further analysis. 
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Figure 6. User interface and functionality of the health impact assessment tab. 

The system employs reactive functions to read and process the baseline and control data. For the baseline 
scenario, the system reads the user-provided CSV file (generated from the previous tab) and distributes the data to 
each receptor to calculate the mean concentration. A similar approach is repeated for the control scenario, 
ensuring that the data are summarized effectively. 

The core of the HIA lies in the processing and visualization of health data. As users initiate the process, a modal 
dialog window signaling the commencement of data processing emerges. The system then reads the population 
data; users can select the source of this data, such as Census data. Then, the system performs spatial processing of 
the population weighted average PM2.5 concentration levels for both baseline and control scenarios. The system 
then calculates the variance in concentrations between the baseline and control scenarios. This variance becomes 
the foundation for computing the relative risk (RR) and the population attributable fraction (PAF). Finally, the 
system calculates premature deaths attributable to PM2.5 based on the PAF, population count, and mortality rate. 
Mortality rates are defaulted to the CDC Places dataset, which reports at the county level. The system distributes 
the county-level mortality rates to individual census tracts based on the population of each tract. Alternatively, 
users can also select the United States Small-Area Life Expectancy Estimates Project dataset, which presents finer-
resolution mortality rates at the census tract level.  

Based on the user’s selection of which census data and mortality data to use, the map on the main tab updates to 
represent the number of premature deaths averted. The result is an interactive map, with polygons symbolizing 
census tracts. Each polygon's hue reflects the premature deaths averted, and a popup adds to the user experience 
by providing tract-specific details. 

The aggregated value of the number of premature deaths averted across all tracts is calculated and displayed at 
the bottom of the map. Users can also download the health impact results in a CSV format. This CSV file contains 
data for each census tract, from both the baseline and control concentrations, regarding RRs, PAFs, and the 
premature deaths attributable to PM2.5. 

5 Case Study Results 
The project team chose to use the North Central Texas Council of Governments (NCTCOG) TDM network as a case 
study to test the framework. This section explains the different components of the modeling process, which 
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involved TDM network preprocessing up to visualizing results and comparing different scenarios using the 
application.  

5.1 Traffic Data 
The NCTCOG TDM network contains information on the flow and speed of vehicles by time period (morning peak—
AM, evening peak—PM, and off peak—OP). The vehicle flow is estimated at different hours using hourly activity 
factors for the respective county for the 2019 base year and 2026 future year. Vehicle speeds were constant for all 
hours inside the same time periods for both analysis years. The data tables were inputted into the preprocessing 
tab of the framework to compare the vehicle flow (Figure 7) and speed (Figure 8) at different hours for all links for 
both analysis years. As seen in Figure 7, the vehicle flow has two peaks: one at 8–9 AM and another at 5–6 PM for 
both analysis years. For all time periods, the vehicle flows in 2026 were significantly higher compared to the 
vehicle flows from 2019.  

 
ns: not significant, *: p < 0.05, **: p < 0.01, ***: p < 0.001, ****: p < 0.0001 

Figure 7. Comparison of flow (vph) for the analysis years of 2019 and 2026 during weekdays. 
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ns: not significant, *: p < 0.05, **: p < 0.01, ***: p < 0.001, ****: p < 0.0001 

Figure 8. Comparison of speed (mph) for the analysis years of 2019 and 2026. 

5.2 Emission Model 
The emission rates for both analysis years were derived from the MOVES Emission Rate Lookup Table generated 
from the MOVES3 model. As shown in Figure 9, the rates for both analysis years were inputted into the 
preprocessing tab and comparison charts were generated for both analysis years. The emission rates for PM10 
(selected for the case study) decreased as speeds increased and the 2019 rates were slightly higher than the 2026 
rates for all road types. The rates were then used to estimate the emission rates for the AERMOD model (in g/m2-
s), which were combined using the flows, speeds, and rates tables inputted into the preprocessing tab.  

 
Figure 9. Comparison of emission rates (g/veh-mi) for the analysis years of 2019 and 2026 by road type and 

average speed. 
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As shown in Figure 10, the emission rates for 2019 were significantly higher for all time periods compared to 2026. 
Although vehicle flow significantly increased in 2026 compared to 2019, the vehicles in 2026 were cleaner 
compared to 2019 based on pollutant emission rates. Thus, the overall emissions were lower in 2026 when 
compared to 2019. 

 
ns: not significant, *: p < 0.05, **: p < 0.01, ***: p < 0.001, ****: p < 0.0001 

Figure 10. Comparison of emission rates (g/m2-s) for the analysis years of 2019 and 2026 by hour of day. 

5.3 Dispersion Model 
The hourly emissions and the geometry generated by the preprocessing tab were inputted into the input tab. 
Receptors were generated at 50 m, 100 m, and 150 m around the centroid of the sources using the functions 
described in Chapter 4. The meteorological data was obtained from the Texas Commission on Environmental 
Quality website, which provides preprocessed metadata files for each county that were ready to use for the 
AERMOD. The AERMOD input, as shown in Figure 11, was generated using the run AERMOD tab. The run produced 
an AERMOD output and a .pst file containing the hourly results. The .pst file was processed to extract the results, 
which are discussed in the next section.  
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Figure 11. Snippet of the AERMOD input file generated by the application. 

Figure 12 shows the spatial variation of PM2.5 concentrations (in µg/m3) in the NCTCOG area as estimated by the 
AERMOD model. The concentrations were higher in city centers and by major highways for both years. The PM2.5 
concentrations appeared to be higher in 2019 when compared to 2026, due to the lower emission rates in 2026. 

 
 

Figure 12. Comparison of PM2.5 concentrations (µg/m3) in NCTCOG area for the analysis years of 2019 and 2026. 
2019 2026 
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Figure 13 shows the diurnal variation of the PM2.5 concentrations for both analysis years. The concentration was 
lower for 2026 when compared to 2019, mainly due to the lower emission rates for 2026. As shown in Figure 14, 
the PM2.5 concentrations were lower at 8–9 AM on the July 1 analysis day due to the increase in wind speeds 
(although the emissions were higher during that time period) as the day progressed, which helped disperse the PM 
concentrations. Receptors were placed at increasing distances (50 m, 150 m, and 300 m) from the roadways to 
determine the exposure of PM2.5 to the populations living close to roadways. Figure 15 shows the diurnal variation 
of PM2.5 concentrations based on the distance of receptors from the sources. The PM2.5 concentrations decreased 
as the distance from the sources increased. 

 
ns: not significant, *: p < 0.05, **: p < 0.01, ***: p < 0.001, ****: p < 0.0001 

Figure 13. Comparison of PM2.5 concentrations for the analysis years of 2019 and 2026. 
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Figure 14. Diurnal variation of wind speed for the modeled day of July 1st. 

 
ns: not significant, *: p < 0.05, **: p < 0.01, ***: p < 0.001, ****: p < 0.0001 

Figure 15. Diurnal variation of PM2.5 concentrations by the distance of receptors from the source. 

Once the results from the dispersion model were obtained, an HIA was performed to evaluate the number of 
premature deaths that could be avoided by the reduction of PM2.5 in 2026 when compared to 2019. Figure 16 
shows the geographical representation of the analysis results. 
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Figure 16. Premature deaths avoided in 2026 by reduction of PM2.5 when compared to 2019. 

6 Conclusions and Recommendations 
The HIA framework documented in this report is a comprehensive tool that integrates various stages of the HIA 
modeling chain, from data input to results visualization. The framework's design is user-centric, ensuring that even 
those without a deep understanding of HIA can navigate and derive insights. The framework's emphasis on 
visualization ensures that users can easily interpret the results. Interactive maps, time series charts, and 
comparative analyses provide a holistic view of the health impacts of air quality changes. The platform's ability to 
work with different sources and formats of data enhances its applicability in various scenarios, regions, or research 
contexts. 

The case study using the NCTCOG TDM network showcased the framework's capabilities. The results from the case 
study highlighted considerable reductions in PM2.5 concentrations in 2026 compared to 2019, leading to fewer 
premature deaths. This reduction was attributed to cleaner vehicles and improved emission rates in the 2026 fleet. 

Future work could focus on incorporating more advanced dispersion and photochemical modeling techniques (e.g., 
CAL3QHC, CAMx, etc.), integrating real-time data sources, and expanding the framework's applicability to other 
environmental health impact assessments. 

7 Outputs, Outcomes, and Impacts 
Outputs from this study include the following: 

• Comprehensive HIA framework: A user-centric tool that integrates various stages of the HIA modeling 
chain, from data input to results visualization. 

• Interactive visual tools: Detailed maps, time series charts, and comparative analyses that allow users to 
interpret the health impacts of air quality changes. 

• Integrated workflow: An integrated workflow that allows users to seamlessly upload datasets ranging 
from TDM, emission inventories, and meteorological data, to population demographics and health 
metrics. 

• R Shiny application: An interactive platform developed using the R language that allows users to conduct 
a full-chain health impact assessment. 
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Outcomes of this study include the following: 

• Enhanced decision-making: Policymakers, researchers, and the public can make informed decisions based 
on the insights derived from the HIA framework. 

• Improved air quality modeling: The framework provides a more accurate representation of how 
pollutants disperse and concentrate in the atmosphere. 

• Increased awareness: Stakeholders gain a better understanding of the health ramifications of air quality 
shifts. 

• Policy recommendations: The results from the HIA can guide regulatory, legislative, or policy changes to 
improve air quality and public health. 

• Standardized HIA process: The framework offers a standardized approach to conducting HIAs, ensuring 
consistency and reliability across different studies. 

Impacts of this study include the following: 

• Reduced health risks: A decrease in premature deaths and other health risks due to improved air quality. 
• Economic benefits: A decrease in healthcare costs associated with air pollution-related diseases and 

conditions. 
• Enhanced public awareness: A more informed public that can advocate for better air quality measures 

and make personal decisions that contribute to cleaner air. 
• Environmental benefits: A decrease in air pollution leading to a healthier ecosystem that benefits flora, 

fauna, and water sources. 

In summary, the outputs of this project provide tangible products and tools, the outcomes lead to changes in the 
transportation system and its framework, and the impacts reflect the broader effects on the transportation system 
and society at large. 

8 Research Outputs, Outcomes, and Impacts 

8.1 Technology Transfer Outputs, Outcomes, and Impacts 
R Shiny Application: An interactive platform developed using the R language that allows users to conduct a full-
chain health impact assessment. 

8.2 Education and Workforce Development Outputs, Outcomes, and Impacts 
N/A 

9 References 
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10 Appendix 
Appendix A. Template for AERMOD Input Generator 

Appendix B. Framework R Codes on Shiny Application 
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