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Executive Summary 

Problem statement: Transportation and electricity generation are the two largest sources of air pollution, 

however, the pollutants caused by these two sectors are becoming increasingly intertwined in today’s world due 

to the increasing popularity of electric vehicles (EVs). In recent years, EVs have become the trend for automobiles 

around the world, and many automobile manufacturers have invested heavily in EVs. According to Bloomberg New 

Energy Finance, EVs will take a 55 percent share of the automobile market by 2040. Although EVs do not produce 

emissions directly, they do induce indirect emissions from the electric power grid when being charged because 

most electric power generation sources are not emission-free. To reduce such indirect EV emissions, it is essential 

to situate EV charging facilities at locations that induce low emissions from the generation sources. Identification 

of these low-emission locations requires real-time, system-wide analyses for the power grid. The electric power 

grid includes a mix of generation units that are powered by different types of fuels, such as coal, natural gas, and 

renewable resources like solar and wind energy. These generation units have different emission rates for each 

pollutant, and different combinations of generation units are dispatched to meet a time-varying load demand. Due 

to transmission congestion, charging an EV at different locations may result in different pollutant emission rates. 

Such real-time, system-wide analyses will provide us with information on locational marginal emissions (LMEs), 

which are the emissions caused by the next unit of electric power consumption at a given location and time. It is 

the very indicator that provides us with insights on which locations have lower emission rates at a given moment. 

Through long-term LME analyses, an infrastructure planner could identify locations with low emission rates to 

build EV charging facilities, thus reducing the indirect pollutant emissions caused by EV charging. This project aims 

to develop an LME assessment framework for gases that impose public health hazards, such as sulfur dioxide (SO2) 

and nitrogen oxides (NOx). It aligns with CARTEEH’s focus on the impact of transportation emissions on human 

health and CARTEEH’s priority of investing in integrated research projects in transportation infrastructure planning 

that consider a nexus of transportation emissions, energy, and health. 

Although LME data are essential for EV charging facility planning, no accurate LME model presently exists that 

considers the network constraints of power systems. Currently, device-level SO2 and NOx emissions have been 

widely studied, including the analysis of emissions from each type of generator and the design of low-emission 

generators. In the 1990s, when the 1990 U.S. Clean Air Act Amendments took effect, the utility industry used 

multiple methods to limit the emissions of hazardous gases such as SO2 and NOx. These methods included setting 

allowances of emissions in energy transactions, adding surcharges to emissions, and adding emission constraints in 

generation dispatch. Subsequent studies focused on limiting overall emissions; none considered marginal 

emissions across the system. To date, studies on marginal emissions remain rather limited, especially for 

hazardous gases. Existing power system marginal emission studies focused on carbon dioxide (CO2) emissions, with 

models that can only estimate marginal emissions rather than accurately calculate them. Currently, two main 

approaches exist for estimating marginal emissions. One approach is to find out the marginal generator based on 

merit order and then calculate marginal emissions based on the type of the marginal generator. The drawback of 

this approach is that it only works in a system without transmission congestion. When transmission congestion 

exists, out-of-merit-order dispatch exists in the system, and more than one marginal generator exists, each of 

which may have a different emission rate. Also under this condition, marginal emissions will be different at 

different locations, but the merit-order-based method can only provide an overall estimate for the entire system. 

An alternative approach is to estimate the type of generator from locational marginal prices using statistical 

methods and then calculate the marginal emissions. Although the results obtained from this method can reflect 

the differences between different locations, it is a challenge to accurately estimate the generation level 

combination of different marginal generators when transmission congestions exist. Additionally, previous studies 

were limited to CO2; the marginal emissions of hazardous gases such as SO2 and NOx have been extremely under-

investigated. Thus, a need exists to develop a framework to accurately calculate LMEs in a congested network, 

especially for hazardous emissions such as SO2 and NOx, so that infrastructure planners can take public health into 



 

 

consideration when making decisions on the locations of EV charging stations or electrified roads with imbedded 

dynamic charging facilities. 

This project aimed to fill this gap by developing a computationally efficient LME evaluation framework for 

hazardous gas emissions. The framework can provide accurate real-time LME information in a congested network 

on a locational basis. Using this framework, LME data in a power system can be obtained and used to optimize EV 

charging facility locations. Infrastructure planners can make informed decisions regarding charging facility 

locations with the emission information we provide, taking into account socioeconomic information that would 

minimize environmental and health impacts and ensure equitable distribution of health benefits. Also, the LME 

data can be provided to EV owners, allowing them to choose a charging facility with a relatively low emission rate 

at their convenience and thus reduce the emissions caused by transportation.  

Technical objectives: The overarching goal of this project was to develop a framework for hazardous gas LME 

evaluation and EV environmental impact mitigation. The framework includes an accurate LME evaluation model 

for hazardous gases, such as SO2 and NOx, and an optimization model to identify EV charging facility locations that 

minimize hazardous gas emissions. This framework will guide infrastructure planners in keeping public health in 

mind and choosing low-emission locations for EV charging facilities. The project included the following two 

objectives:  

• Objective 1. Develop an accurate hazardous gas LME evaluation model for power systems. Transmission 

congestion exists commonly in power systems. In such congested systems, increasing load demand at 

different locations may result in different emission rates for hazardous gases. However, existing emission 

evaluation models fail to reflect such locational differences. In this objective, we aimed to develop an 

accurate LME evaluation model for hazardous gases from power systems. The model was intended to 

calculate the marginal emission rate based on locations with load increases. This model was also intended 

to provide real-time power system LMEs to EV charging infrastructure planners and EV owners so that 

infrastructure planners can choose an EV charging facility location with relatively low LMEs and EV owners 

can choose to charge their EVs at a charging facility that induces low emissions. 

• Objective 2. Develop a model to analyze and mitigate the impact of EV charging on hazardous gas 

emissions from power systems. Because of a volatile load demand, the LMEs in power systems vary not 

only locationally but also temporally. To identify locations where EV charging facilities may induce low 

emissions, it is essential to analyze LME data at each location over the long term. Also, to enhance EV 

adoption, public opinion needs to be analyzed at each location. In this objective, we aimed to analyze the 

LMEs and public opinion for future EV charging station allocation. 

Key findings: We established models to analyze the LMEs of power systems. The emission data can be used to 

optimally allocate EV charging stations based on the environmental impact of EV charging. The following are some 

key findings from the emission tracking studies: 

• The generations from different generators can be tracked in a spatiotemporal manner. 

• The emissions induced by EV charging can be tracked in real time based on the charging location. 

• EV charging stations can be allocated based on their environmental impacts. 

We also conducted research regarding public opinions of EVs and EV charging in the Paso del Norte Region to 

facilitate EV adoption. The key findings include the following: 

• Underrepresented communities (URCs) expressed remarkable interest in EVs, charging stations (ChSs), 

and electrified roadways (ERWs). 

• Most participants had some knowledge of EVs, less knowledge of ChSs, and no knowledge of ERWs. 



 

 

• Results indicated that the evident gap in essential knowledge of EV technology in URCs was the main 

barrier to EVs widespread diffusion and adoption.  

• Because most URC residents lacked EV technology knowledge, they expressed the need to have their 

doubts and concerns addressed before even considering an EV purchase. 

Project impacts: Although EVs do not generate emissions by themselves, the electric power consumed by EVs is 

not completely emission-free. In this project, we developed models to evaluate the LMEs from power systems. 

LMEs can be used to analyze the emissions induced by EVs and facilitate analysis of their environmental impacts. 

We also considered the emissions induced by EV charging in the optimal allocation of EV charging stations. 

Additionally, public opinions on EV and EV charging were analyzed. This study revealed differences among groups 

of people with different socioeconomic statuses and shed light on the concerns that need to be addressed in the 

adoption of EVs. This project supported two graduate students—one student pursuing their master’s degree and 

one student pursuing their doctoral degree—in their work toward their thesis or dissertation. Additionally, the 

students and principal investigators of this project were actively involved in outreach activities that enhanced 

public knowledge of EVs. 
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Background and Introduction 

Introduction 
Transportation and electricity generation are the two largest sources of air pollution 1–3, however, the pollutants 

caused by these two sectors are becoming increasingly intertwined in today’s world due to the increasing 

popularity of electric vehicles (EVs). In recent years, EVs have become the trend for automobiles around the world, 

and many automobile manufacturers have invested heavily in EVs. According to the Bloomberg New Energy 

Finance, EVs will take a 55 percent share of the automobile market by 2040 4. Although EVs do not produce 

emissions directly, they do induce indirect emissions from the electric power grid when being charged because 

most electric power generation sources are not emission-free. According to the U.S. Energy Information 

Administration, more than 1 million metric tons of sulfur dioxide (SO2) and nitrogen oxides (NOx) are produced 

each year in the United States due to electric power generation 5. With an increasing number of EVs hitting the 

road, electric power consumption will increase due to EV charging, resulting in more emissions from the electric 

power systems. To reduce such indirect EV emissions, it is essential to situate EV charging facilities at locations that 

induce low emissions from the generation sources. Identification of these low-emission locations requires real-

time, system-wide analyses for the power grid. The electric power grid includes a mix of generation units that are 

powered by different types of fuels, such as coal, natural gas, and renewable resources like solar and wind energy. 

These generation units have different emission rates for each pollutant, and different combinations of generation 

units are dispatched to meet a time-varying load demand. Charging an EV at different locations may result in 

different pollutant emission rates 6 due to transmission congestion. Such real-time, system-wide analyses will 

provide us with information on locational marginal emissions (LMEs), which are the emissions caused by the next 

unit of electric power consumption at a given location and time. It is the very indicator that provides us with 

insights into which locations have lower emission rates at a given moment. Through long-term LME analyses, an 

infrastructure planner could identify locations with low emission rates to build EV charging facilities, thus reducing 

the indirect pollutant emissions caused by EV charging. This project aimed to develop a framework for LME 

evaluation and impact mitigation for hazardous gases, such as SO2 and NOx, induced by EV charging. It aligns with 

CARTEEH’s focus on the impact of transportation emissions on human health and CARTEEH’s priority of investing in 

integrated research projects in transportation infrastructure planning that consider a nexus of transportation 

emissions, energy, and health. 

Although LME data are essential for EV charging facility planning, no accurate LME model presently exists that 

considers the network constraints of power systems. Currently, device-level SO2 and NOx emissions have been 

widely studied, including the analysis of emissions from each type of generator 7 and the design of low-emission 

generators 8–10. Although reducing emissions at the device level sets the foundation for reducing overall 

emissions, system-level optimization is still necessary for reducing the emissions due to the complexity of power 

systems. Each power system has a mix of generators with different emission rates, and generators need to be 

properly used to meet the electricity demand considering different constraints related to transmission, generator 

ramping, and minimum up and down times. In such a complex environment, meeting all the constraints while 

minimizing emissions is a critical task. System-level emission studies for electric power generation were initiated in 

the 1990s when the 1990 U.S. Clean Air Act Amendments took effect. Starting then, the utility industry used 

multiple methods to limit the emissions of hazardous gases such as SO2 and NOx. These methods included setting 

allowances of emissions in energy transactions 11, adding surcharges to emissions 12, and adding emission 

constraints in generation dispatch 13. Subsequent studies focused on limiting overall emissions; none considered 

marginal emissions 14. Although overall emissions are important environmental impact indicators for the existing 

system, they do not reveal the impact on emissions imposed by an additional load, such as an EV charging station. 

To know how much impact an additional load could have on the system’s emissions, it is important to evaluate the 

marginal emissions of the system (i.e., the change in system emissions caused by a one-unit increase of the load). 

To date, studies on marginal emissions remain rather limited, especially for hazardous gases. Existing power 

system marginal emission studies focused on carbon dioxide (CO2) emissions, with models that can only estimate 
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marginal emissions rather than accurately calculate them. Currently, two main approaches exist for estimating 

marginal emissions. One approach is to find out the marginal generator based on merit order and then calculate 

marginal emissions based on the type of the marginal generator 15. The drawback of this approach is that: (1) it 

only works in a system without transmission congestion, and (2) the locational differences of marginal emissions 

cannot be reflected. Without transmission congestion, the system only has one marginal generator, and the 

marginal emissions for each gas are the same across the system. Under a one-unit load increase, this one marginal 

generator will produce the one unit of power to meet the demand, and system-wide marginal emissions can be 

calculated based on the emission rate of this generator. When transmission congestion exists, there will be 

multiple marginal generators in a system due to the out-of-merit-order dispatch. These marginal generators may 

have different emission rates, and under a one-unit load increase, the distribution of the additional generation 

among these generators cannot be revealed using this approach. Also with transmission congestion, the 

distribution of the additional generation among the marginal generators depends upon the location of the load 

increase, but this marginal emission evaluation approach cannot reveal such locational differences. An alternative 

approach is to estimate the type of generator from locational marginal prices using statistical methods and then 

calculate the marginal emissions 16. Although results obtained from this method can reflect the differences in 

marginal emissions between different locations, it is a challenge to accurately estimate the generation level 

combination of different marginal generators when transmission congestions exist. Additionally, previous studies 

on marginal emissions only focused on CO2; the marginal emissions of hazardous gases such as SO2 and NOx have 

been extremely under-investigated. Because of the lack of studies on marginal emissions of hazardous gases from 

power systems, the public health impact of electric power usage cannot be properly evaluated. However, with the 

electrification of transportation systems, it is paramount to understand the impact of hazardous gas emissions 

imposed by the increased use of electric power so that the public health impacts of electric vehicles can be 

evaluated and approaches to mitigate such impacts can be developed. Thus, an urgent need exists for a framework 

to accurately calculate the LMEs for hazardous gases in congested power systems and effectively reduce the 

emissions caused by EV charging facilities. This framework will assist EV charging infrastructure planners in making 

decisions that consider public health. 

This project aimed to fill this gap by developing a framework for evaluating the hazardous gas LMEs in power 

systems and the environmental impact mitigation for electric vehicles. This framework includes: (1) a 

computationally efficient LME evaluation model for hazardous gas emissions, such as SO2 and NOx; and (2) an 

approach for minimizing hazardous gas emissions induced by EV charging. The LME evaluation model can provide 

accurate real-time LME information in a congested network on a locational basis and identify EV charging locations 

that can potentially induce relatively low emissions from the power system. Also, the LME evaluation model can be 

used to generate data for EV owners, allowing them to choose a charging facility with relatively low emissions at 

their convenience, thus reducing the environmental and public health impact imposed by transportation. An 

optimization model was also developed to find the EV charging facility locations that result in relatively low 

environmental and public health impacts while considering the physical constraints of the power and 

transportation systems and environmental and public health equities. Using this framework, infrastructure 

planners can make informed decisions regarding charging facility locations that would minimize environmental and 

public health impacts, ensure equitable distribution of environmental and public health benefits, and satisfy the 

physical requirements for power system operations.  

Tracking the Source of Marginal Electricity Generation 
Moving toward sustainability has become a key focus for companies and policymakers in the past few decades due 

to rapidly increasing greenhouse gas (GHG) emissions in our atmosphere. These emissions have been widely 

attributed to the global increase in temperatures observed since the mid-20th century caused by the burning of 

fossil fuels to generate electric power 17. According to the Fifth Assessment report by the Intergovernmental Panel 

on Climate Change (IPCC), the increase in CO2 emissions in the atmosphere was 2,040 ± 310 Gt CO2 between 1750 

and 2011. About half of this increase in emissions occurred in the last 40 years, and emissions are projected to 
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continue rising despite a growing number of climate change mitigation policies 18. It is important to note that the 

total CO2 levels in our atmosphere today are unprecedented in the last 800,000 years and are estimated to cause 

negative consequences 19. According to the U. S. Environmental Protection Agency (EPA), the emissions from 

burning fossil fuels for energy production constituted about 78 percent of the total increase in emissions from 

1970 to 2011 and is the largest contributor to global greenhouse emissions 20. In the United States alone, 

electricity production is the second largest emitter, producing 25 percent of the GHG emissions in 2019 Error! 

Reference source not found.. Due to the problems encountered from the generation of emissions from the 

electric power industry, a need exists to find solutions to meet our power demand using a more sustainable 

approach.  

Renewable energy is a viable solution to curbing GHG emissions and mitigating the impacts on our environment 

because it produces virtually no emissions. The U.S. Energy Information Administration (EIA) estimates that 

renewable energy in the United States will increase from 21 percent in 2020 to 42 percent in 2050 21. As recently 

as 2019, the total renewable consumption in the United States grew to a record high of 11.5 quadrillion Btu 22. 

Even with substantial growth, renewable sources only make up about 11.4 percent of the energy in the United 

States 23. Many policies have been used to encourage the adoption of renewable energy. The U.S. Renewable 

Portfolio Standards (RPS) is a policy program that requires electricity providers to meet a specific amount of a 

consumer’s electricity with renewable resources 24. The RPS program in 2013 reduced CO2 equivalent emissions 

by 59 million metric tons and air pollution emissions like SO2 by 77,400 metric tons 25. An example of an RPS 

implementation is the Renewable Energy Credit (REC) program established by the Public Utility Commission of 

Texas, which mandates that 10,000 megawatts (MW) of renewable energy capacity be added in Texas by 2025 26. 

According to a compliance report by the Electric Reliability Council of Texas (ERCOT), this program exceeded its 

10,000 MW target, producing over 26,045 MW of renewable capacity and showing the viability of such programs 

to increase investment in renewable generation 27. The accuracy in which renewable energy is tracked in an 

electricity market is important in the implementation of policies that seek to incentivize specified amounts of 

renewable energy generation. 

In recent years, many studies have been done on renewable generation consumption and greenhouse gas 

emission reduction. In Error! Reference source not found., the authors proposed an economic dispatch that 

analyzed the operation of conventional plants with wind generation and determined the amounts of CO2, SO2, and 

NOx emissions that were produced. It is important to note that this study incorporated wind forecasts into the 

dispatch decisions for more computational efficiency. The authors in 28 and 29 proposed a combination of 

economic dispatch and unit commitment models to show that wind curtailment can reduce costs and CO2 

emissions due to factors like network constraints and increased ramp capability. In 30, the authors developed a 

model that minimized both costs and emissions in power system operations by considering a high penetration of 

renewable energy. Using the Northwest power grid, this study was able to show that the proposed model can be 

used in the research of wind and photovoltaic consumption capacity. In 31, an optimal microgrid operations model 

was proposed to minimize the net present cost. This study analyzed the reductions in costs and emissions in 

serving the load by comparing the results from the proposed method with results when the load was only served 

by the grid. The authors in 32 investigated the operational flexibility and costs of low-emission power systems 

using simulation over different time horizons. In 33, a dispatch model was used on the 2012 All Ireland system to 

determine the savings in CO2 emissions for a year. In 34, the authors proposed a unit commitment model to 

analyze the cost and emission impacts of wind generation when energy prices were negative. In 35, the authors 

proposed a multi-objective optimization model to minimize the cost and emissions of hybrid power systems. 

Finally, the authors in 36 proposed a method of evaluating the reduction in emissions due to power grid 

interconnection using an integrated transnational generation-transmission planning model. 

With the increase in renewable energy integration to the electric grid, an urgent need exists to accurately track 

consumption amounts. However, optimal models that track renewables with consideration to location and time 
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constraints are lacking. None of the aforementioned studies considered the location of renewable 

integration/curtailment with regard to costs and emissions. The combination of different generation technologies 

and a constrained transmission system can make reducing CO2 emissions heavily reliant on the location and time 

38, 37. The main contribution of this study was the development of a proposed optimization model that tracks 

renewable generation while considering location and time. Researchers proposed a model to calculate the 

marginal generation from each marginal generator under increased loads at certain locations in the power system 

based on economic dispatch results. It can effectively track the sources of electricity generation in a locational and 

temporal manner. Compared to the cumulative renewable energy consumption of an electricity customer over a 

certain period, this model focuses on marginal generation tracking and allows electricity consumers the ability to 

see in real time how much of their electric power will be from renewable energy sources if they use an additional 

appliance at a certain time point. This information allows environmentally aware consumers to strategically plan 

their energy consumption over the day. A modified IEEE reliability test system (RTS-96) was used to analyze the 

results of tracking renewable generation using this model. Results showed that the proposed model can be used to 

determine the sources of marginal generation at specific buses at different times in a computationally efficient 

manner. 

Reducing Marginal Emissions in Power Systems with Distributed Flexible Alternating Current 

Transmission Systems 
The increasing implementation of renewable energy sources in the electricity market poses significant challenges 

to power system operation due to their irregular and variable nature 38. As a result, grid operators may impose a 

restriction on the output of renewable energy sources to maintain system stability and reliability. This restriction 

on renewable energy, also known as renewable energy curtailment (REC), has become a major concern for the 

efficient integration of renewable energy into the electric grid 39. Transmission congestion is a major cause of REC 

40. To reduce congestion, a variable impedance series distributed flexible alternating current (AC) transmission 

system (D-FACTS) can be used to reduce REC by improving grid flexibility. 

A D-FACTS is essentially a scaled back version of a traditional flexible AC transmission system (FACTS) 41. Rather 

than being placed in a substation, these systems are placed along the transmission line, using several smaller 

devices rather than a single large one 42. In terms of reliability, a D-FACTS can also help provide stability to a grid 

that has been affected by failures. This study focused not only on the cost-benefit of a D-FACTS in the power grid, 

but also considered the environmental benefits it will have on the system. Because a D-FACTS can improve the 

transmission capacity of a network, it is anticipated that by improving the flow capacity of the electric grid, 

renewable energy integration will be enhanced, and the environmental impact of power systems can be reduced 

43. 

Renewable energy presents a promising option for reducing GHG emissions and environmental impacts because it 

produces virtually no emissions during generation. A total of 6,347.7 million metric tons of CO2 were produced in 

the United States in 2021, accounting for all land sectors. Compared to 2020, emissions increased by a total of 6.8 

percent due to the burning of fossil fuels to produce energy 44. However, as mentioned in 45, 17 percent of the 

world’s electric energy is being obtained from renewable sources, mainly from large hydroelectric dams. New rules 

have been implemented to encourage the use of renewable energy in the United States. One such regulation is the 

previously mentioned Renewable Portfolio Standards (RPS) program, which requires electricity providers to supply 

a specific consumption of renewable energy. Also mentioned previously, another example of a program aimed at 

encouraging renewable energy consumption is the Renewable Energy Credit program established by the Public 

Utility Commission of Texas, which requires that 10,000 MW of renewable energy be added to the generation mix 

in Texas by 2025. 

With the increasing penetration of renewable energy, a growing interest has emerged in tracking the source of 

emissions. Marginal emissions can be used to evaluate the emissions induced by one unit of power consumption at 
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a certain location in real time. This metric can be used to track the emissions 46 because a combination of different 

generation technologies and a constrained transmission system can make reducing CO2 emissions reliant on the 

location and time Error! Reference source not found.. With the integration of flexible transmission technologies, 

such as D-FACTS, marginal emissions can be affected. However, studies are still lacking on how flexible 

transmission technologies affect the emissions in power systems, especially marginal emissions that differ 

depending on the location and time. Therefore, this research aimed to investigate the impacts of an optimized D-

FACTS deployment on marginal emissions in power systems. This research contributed to the understanding of 

changes in power system environmental impacts as a result of a D-FACTS deployment, ultimately leading to further 

decarbonization of the power grid. 

Achieving an Environmentally Aware Allocation of Electric Vehicle Charging Stations 
The U.S. Department of Energy reported that the sale of light-duty plug-in electric vehicles increased from 308,000 

in 2020 to 608,000 in 2021 47. Furthermore, the sale of light-duty vehicles is predicted to increase to about 

2.21 billion vehicles by 2050, according to the U.S. Energy Information Administration. The sale of vehicles with 

plug-in charging is expected to grow by 31 percent in this same time 48. As a result, the increased load from 

charging these vehicles could affect the stability and reliability of the grid. The consumption of a level 2 electric car 

charger is 7.2 kW, but this can increase with the fast chargers 49. For instance, the Model S charger uses the Tesla 

wall connector with an output of up to 11.5 kW 50. The individual charging output for each vehicle is negligible to 

the grid. However, hundreds of vehicles charging in the same location and time could increase the load by a range 

of megawatts. Several long-haul trucks would need to use heavy-duty EV chargers, which could also increase the 

load by multiple MWs 51. One solution to ensure that the load is not impacted would be to use charging 

management to schedule the charging of vehicles when needed 52. In this study, the primary focus was on the 

planning and placement of these charging stations to maintain grid functionality with a reasonable cost and 

minimal environmental impact.  

Many studies have been conducted on EV charging station allocation and planning in recent years. In 53, the 

authors used a two-step linear programming (LP) solution to determine the placement of EV charging stations to 

minimize the supply cost. The authors in 54 proposed an optimization problem to minimize the placement cost of 

the charging infrastructure by using a branch and bound algorithm. The authors in 55 proposed a multi-objective 

framework that considers the characteristics of the power grid, economic factors, reliability, and power loss to 

place EV charging stations in Guwahati, India. In 56, the authors proposed an adaptive particle swarm optimization 

algorithm for EV charging station placement with an objective function to minimize the cost of construction and 

operation. The authors in 57 developed a particle swarm optimization problem with the objective of finding an 

optimal location for EV charging stations in the IEEE-33 Bus Distribution System. In 58, a bilevel optimization 

problem was proposed to determine the optimal locations for EV fast charging stations. The model was converted 

into a single-level optimization problem to be used by the proposed algorithm to compute the optimal placement 

of charging stations. The authors in 59 investigated the optimal transit stops to place EV charging stations for 

electric buses. The authors used a linear programming relaxation algorithm with the objective of minimizing the 

cost of installation. In 60, the authors proposed a spatial temporal expanding power grid model to allocate the EVs, 

charging stations, and distributed generation units using the constrained Markov decision process. The authors in 

61 used the grey wolf optimization and whale optimization algorithms to find the optimal location for EV charging 

stations that would minimize the power loss while maintaining the voltage profile of the system. Finally, the 

authors in 62 proposed a location optimization model based on a genetic algorithm to allocate EV charging stations 

in Ireland with the objective of minimizing the operating cost.  

With the electrification of transportation and rise in sales of EVs, a need exists to optimally allocate charging 

stations for these vehicles. However, models that evaluate the electricity costs and emissions produced by the 

increase in demand from EV charging are still lacking. None of the previous studies considered the reduction in 

marginal costs and emissions in a spatial-temporal manner. A constrained transmission system combined with 
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different generation technologies can make the reduction of CO2 emissions dependent on the location and time 

38, Error! Reference source not found.. The main contribution of this study is the development of a proposed 

optimization model that determines the costs and emissions produced by an increase in load from EV charging 

stations. The proposed model calculates the marginal generation from each marginal generator caused by the 

increase in demand based on unit commitment and economic dispatch results. From there, the marginal emission 

factor (MEF) is calculated with the objective of minimizing the cost to meet the demand. These results were 

tracked every hour for one year to determine the optimal locations to place EV charging stations that would 

minimize both the cost of electricity to the consumers and the environmental impacts of emission production. The 

model in this study was simulated using a modified IEEE RTS-96. Results showed that the proposed model can be 

used in a computationally efficient manner. 

Ensuring Equity in Access to EVs and EV Charging by Examining the Perceptions, Opinions, and 

Knowledge in Underrepresented Communities in the Paso del Norte Region 
As EVs make their way into the market as a sustainable solution to reduce fuel-use dependency and lower GHG 

emissions and environmental pollution 63–66, attention has turned to previous studies addressing consumer 

perceptions, behaviors, and tendencies regarding EV adoption. These studies found that cost, style, size, and range 

anxiety were among the main influential factors affecting the potential purchase and use of the vehicles 67–70. 

This study, however, provided insights from the unique perspective of underrepresented communities (URCs) in El 

Paso, Texas, that go beyond these factors. In this study, we evaluated how these communities perceive EVs, EV 

charging stations (ChSs), and electrified roadways (ERWs). We also examined access to each of these technologies 

by these communities, explored the potential of having ChSs and ERWs installed in their neighborhoods and 

measured their desire for the technologies to develop and be equally accessible for all. 

Although consumers in general share a familiarity with EVs to some extent, basic knowledge of the technology, 

capable of influencing consumer perceptions and potentially leading to adoption, seems to be absent in the 

general public. The lack of this basic knowledge—perhaps one of the major barriers between EVs and consumers in 

URCs—goes beyond misconception, range anxiety, style, and pricing that have been addressed in previous studies 

on EV adoption and consumer behavior 63–65. Participants from URCs showed greater concern about 

electrification costs, health impacts, the variety of EV charging options, initial and ongoing maintenance costs for 

EVs, and EV safety. After learning of their availability, government incentives and tax rebates also sparked 

particular interest from URC participants when considering an EV purchase. 

Acknowledging and addressing the existing knowledge gap between consumers, EV manufacturers, and EV-related 

infrastructure developers is essential for the widespread diffusion and adoption of EVs. Making the information 

accurate, easily accessible to the public, and effective in addressing their specific needs can make a significant 

difference in EV adoption in new and unexplored markets like URCs. 

Approach 

To develop an accurate LME evaluation framework, three steps were carried out.  

The first step was to develop an economic dispatch (ED) model to determine generation dispatch. ED is an 

optimization problem that minimizes the dispatch cost considering different physical constraints of power systems. 

The ED model was developed using C++ and the C++ application programming interface of Gurobi, a commercial 

optimization solver, to ensure computational efficiency. The model was implemented on a modified IEEE RTS-96, 

and the generation level of each generator and the power flow through each line were obtained as results. From 

the results, marginal generators and binding transmission lines were identified—marginal generators are 

generators that are online but not generating at their full capacity, and binding transmission lines are lines that are 

utilized at their rating limits.  
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In the second step, a linear model was built to obtain the generation level change from the marginal generators 

under a load demand increase of 1 MW in the power system, considering transmission constraints and the 

relationship between generation injection and power flow changes on the transmission lines. The model, which 

included a set of linear equations, was implemented using the data obtained in Step 1 and was solved using the 

MATLAB Symbolic Math Toolbox. In this step, the marginal generation of each marginal generator was obtained. 

In the third step, an LME calculation method based on the marginal generation and the hazardous gas emission 

rate of each marginal generator was developed. The LMEs were calculated using MATLAB. Figure 1 illustrates these 

three steps. 

 

Figure 1. Three steps for MEF calculation. 

After the LME evaluation framework was developed, we used it to optimally allocate EV charging stations based on 

the environmental impacts. Additionally, we learned about public opinions regarding EVs and EV charging that set 

a foundation for future EV adoption. 

Methodology 

Nomenclature 

Indices 
𝑏 Binding transmission line. 

𝑔 Generator. 

𝑘 Transmission line. 

𝑚 Marginal generator. 

𝑛 Node. 

Sets 
𝜎+(𝑛) Transmission lines with their to bus connected to node n. 

𝜎−(𝑛) Transmission lines with their from bus connected to node n. 

𝑔(𝑛) Generators connected to node n. 

Variables 
∆𝐹𝑏 Change of power flow through transmission line b. 

∆𝑃𝑚 Change of generation level of marginal generator m. 

𝑏𝑘,𝑡 Susceptance of transmission line k at time t. 

𝐹𝑘,𝑡 Real power flow through transmission line k at time t. 

𝑃𝑔,𝑡 Real power generation of generator g at time t. 

𝑢𝑔,𝑡 Generator status (1=generator g is on at time t, 0=generator g is off at time t). 

𝑣𝑔,𝑡 Startup variable (1=generator g starts up at time t, 0=generator g does not start up at time t). 

𝑤𝑔,𝑡 Shutdown variable (1=generator g shuts down at time t, 0=generator g does not shut down at time t). 

𝜃𝑏,𝑡 Voltage angle at bus b at time t. 

𝜃𝑓𝑟,𝑘,𝑡 Voltage angle at the from node of line k at time t. 

𝜃𝑡𝑜,𝑘,𝑡 Voltage angle at the to node of line k at time t. 

 
Identify marginal generators and 
binding transmission constraints 

 
Marginal generation is 

calculated by optimization  

 
LME calculated using 
marginal generation 

Economic Dispatch Marginal Generation LME 
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Parameters 
𝐵 Total number of binding transmission lines. 

𝐵 + 1 Total number of marginal generators. 

𝑏𝑘 Susceptance of transmission line k. 

𝑏𝑘
𝑚𝑎𝑥 Upper susceptance limit of transmission line k. 

𝑏𝑘
𝑚𝑖𝑛 Lower susceptance limit of transmission line k. 

𝑐𝑔
𝑁𝐿 No-load cost of generator g. 

𝑐𝑔
𝑙𝑖𝑛𝑒𝑎𝑟 Linear cost of generator g. 

𝑐𝑔
𝑆𝐷 Shutdown cost of generator g. 

𝑐𝑔
𝑆𝑈 Startup cost of generator g. 

𝐹𝑘
𝑚𝑎𝑥 Thermal capacity/voltage drop limit of transmission line k. 

𝐿𝑛 Marginal load increase at bus n. 

𝐿𝑛,𝑡 Load at bus n at time t. 

𝑁𝑔 Total number of generators. 

𝑃𝑔
𝑚𝑎𝑥 Upper generation limit of generator g. 

𝑃𝑔
𝑚𝑖𝑛 Lower generation limit of generator g. 

𝑅𝑅𝑔 Hourly ramp-rate for generator g. 

𝑇 Length of investigated time period. 

𝑇𝑔
𝑑𝑜𝑤𝑛 Minimum down time for generator g. 

𝑇𝑔
𝑢𝑝

 Minimum up time for generator g. 

𝜇𝑚  Emission factor of generator m. 

𝜇𝑀𝐸𝐹 Marginal emission factor. 

∆𝜃𝑘
𝑚𝑎𝑥 Maximum voltage angle separation for line k to maintain stability. 

∆𝜃𝑘
𝑚𝑖𝑛 Minimum voltage angle separation for line k to maintain stability. 

𝜑𝑚
𝑏   Change of power flow through transmission line b with power injection at bus with generator m. 

𝜑𝑛
𝑏 Change of power flow through transmission line b with power injection at bus with marginal load 

increase. 

The Power System Operation Model  
To build the renewable energy tracking system, an economic dispatch was implemented to identify marginal 

generators and binding transmission lines. A unit commitment (UC) problem was used to identify the generator 

unit commitment and generation dispatch during a given day. This model uses a mixed-integer linear program 

based on a multi-period optimal direct current (DC) power flow formulation that takes into consideration the time 

of operation. Then, the distribution of power on each transmission line can be calculated to monitor the power 

generation of each marginal generator that contributes to an increase in load using the following formulations: 

𝑚𝑖𝑛 (∑ ∑ (
𝑐𝑔

𝑙𝑖𝑛𝑒𝑎𝑟𝑃𝑔,𝑡+𝑐𝑔
𝑁𝐿𝑢𝑔,𝑡

+𝑐𝑔
𝑆𝑈𝑣𝑔,𝑡+𝑐𝑔

𝑆𝐷𝑤𝑔,𝑡
)

𝑁𝑔

𝑔=1
𝑇
𝑡=1 ) (1) 

𝑢𝑔,𝑡𝑃𝑔
𝑚𝑖𝑛 ≤ 𝑃𝑔,𝑡 ≤ 𝑢𝑔,𝑡𝑃𝑔

𝑚𝑎𝑥 (2) 

−𝐹𝑘
𝑚𝑎𝑥 ≤ 𝐹𝑘,𝑡 ≤ 𝐹𝑘

𝑚𝑎𝑥 (3) 

𝑏𝑘(𝜃𝑓𝑟,𝑘,𝑡 − 𝜃𝑡𝑜,𝑘,𝑡) = 𝐹𝑘,𝑡 (4) 

∑ 𝐹𝑘,𝑡 − ∑ 𝐹𝑘,𝑡 + ∑ 𝑃𝑔,𝑡 = 𝐿𝑛,𝑡𝑔𝜖𝑔(𝑛)𝑘𝜖𝜎−(𝑛)𝑘𝜖𝜎+(𝑛)  (5) 

𝑣𝑔,𝑡 − 𝑤𝑔,𝑡 = 𝑢𝑔,𝑡 − 𝑢𝑔,𝑡−1 (6) 
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𝑣𝑔,𝑡 + 𝑤𝑔,𝑡 ≤ 1 (7) 

−𝑅𝑅𝑔 ≤ 𝑃𝑔,𝑡 − 𝑃𝑔,𝑡−1 ≤ 𝑅𝑅𝑔(8) 

∑ 𝑢𝑔,𝑡 ≥ 𝑇𝑔
𝑢𝑝

(𝑢𝑔,𝑚 − 𝑢𝑔,𝑚−1),
𝑚+𝑇𝑔

𝑢𝑝
−1

𝑡=𝑚 2 ≤ 𝑚 ≤ 𝑇 − 𝑇𝑔
𝑢𝑝

+ 1  (9) 

∑ (1 − 𝑢𝑔,𝑡) ≥ 𝑇𝑔
𝑑𝑜𝑤𝑛(𝑢𝑔,𝑚−1 − 𝑢𝑔,𝑚),

𝑚+𝑇𝑔
𝑑𝑜𝑤𝑛−1

𝑡=𝑚 2 ≤ 𝑚 ≤ 𝑇 − 𝑇𝑔
𝑑𝑜𝑤𝑛 + 1 (10) 

∆𝜃𝑘
𝑚𝑖𝑛 ≤ 𝜃𝑓𝑟,𝑘,𝑡 − 𝜃𝑡𝑜,𝑘,𝑡 ≤ ∆𝜃𝑘

𝑚𝑎𝑥 (11) 

𝜃1,𝑡 = 0 (12) 

The objective function was intended to minimize the total operating cost, which included the generation, no-load, 

start-up, and shut-down costs of the system, as formulated in Equation (1). The constraints were represented by 

Equations (2)–(12). The real power output limits of the generators were determined by Equation (2). The thermal 

limits of the transmission lines were determined by Equation (3). The DC power flow was determined by Equation 

(4), while the nodal power-balance constraints were determined by Equation (5). The variable calculations for 

start-up and shutdown were determined in Equations (6) and (7). Ramping constraints were determined by 

Equation (8). The minimum up/down times of the generators were determined by Equations (9) and (10), 

respectively. The voltage angle difference limits between two connected busses were determined by Equation 

(11). Finally, the reference voltage angle was set to 0, as shown in Equation (12).  

Calculation of the Marginal Generation from Each Marginal Generator 
The marginal generation is defined as the amount of generation from each generator when the load at a certain 

bus increases by 1 MW. The total marginal generation from all the generators should be equal to the load increase 

(1 MW), the power flow through the binding transmission lines should remain unchanged with the load increase, 

and the generation and load changes should result in no changes of power flow through the binding transmission 

lines. Based on these relationships, the following system of linear equations can be solved to obtain the marginal 

generation: 

𝑚𝑖𝑛(∑ (∆𝑃𝑚𝑐𝑔
𝑙𝑖𝑛𝑒𝑎𝑟)𝐵+1

𝑚=1 ) (13) 

∑ ∆𝑃𝑚
𝐵+1
𝑚=1 = 𝐿𝑛 (14) 

∆𝐹𝑏 = 0, ∀𝑏  (15) 

∆𝐹𝑏 = ∑ ∆𝑃𝑚𝜑𝑚
𝑏𝐵+1

𝑚=1 − 𝐿𝑛𝜑𝑛
𝑏, ∀𝑏  (16) 

The marginal generation is defined as the next 1 MW of power used in the system, which can be supplied by 

multiple generators. The objective function of the MEF model was intended to minimize the total cost of meeting 

the load increase, as formulated in Equation (13). The change in generation of the marginal generators must add 

up to the load increase of 1 MW, as formulated in Equation (14). It is unlikely that an increase in load would 

alleviate transmission congestion, which means the power flow changes on binding lines must remain 0, as shown 

in Equation (15). The relationship between the changes in generation at the buses of marginal generators, the 

power flow through binding transmission lines, and load were found using a power transfer distribution factor 

(PTDF) matrix, as formulated in Equation (16). This matrix used a sensitivity factor to determine the change in 

power flow through a transmission line due to a change in load at a bus. 
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Calculation of the LMEs 
The LMEs were calculated using the marginal generation and emission rate of each generator, as formulated in 

Equation (17) as follows: 

𝜇𝑀𝐸𝐹 = ∑ ∆𝑃𝑚𝜇𝑚
𝐵+1
𝑚=1  (17) 

Impact of Flexible Transmission Systems on LMEs 
The mathematical formulations in this study involved the use of a two-step optimization problem; the first step 

optimally allocated the D-FACTS, and the second step evaluated the MEFs considering the effects of the installed 

D-FACTS. 

The first step, in which we optimized the allocation of the D-FACTS, used a model based on the DC optimal power 

flow formulation to allocate the D-FACTS modules in each phase. The proposed model addressed a multi-objective 

problem that aimed to minimize both operating costs and global warming potential (GWP). In addition, the D-

FACTS devices were allocated per line rather than per mile on each line, providing greater flexibility. A multi-

objective evolutionary algorithm (MOEA) was used in this model to solve the problem in a computationally 

efficient manner. Because the implementation of these modules on transmission lines also adjusted their 

reactances, the effects were dependent upon the direction of power flow 71. These relationships are formulated in 

Equations (18) and (19) as follows: 

If 𝜃𝑓𝑟,𝑘,𝑡 − 𝜃𝑡𝑜,𝑘,𝑡 ≥ 0,  

𝜃𝑓𝑟,𝑘,𝑡 − 𝜃𝑡𝑜,𝑘,𝑡 𝑋𝑘
𝑚𝑎𝑥⁄ ≤ 𝐹𝑘,𝑠 ≤ 𝜃𝑓𝑟,𝑘,𝑡 − 𝜃𝑡𝑜,𝑘,𝑡 𝑋𝑘

𝑚𝑖𝑛⁄  (18) 

If 𝜃𝑓𝑟,𝑘,𝑡 − 𝜃𝑡𝑜,𝑘,𝑡 ≤ 0,  

 𝜃𝑓𝑟,𝑘,𝑡 − 𝜃𝑡𝑜,𝑘,𝑡 𝑋𝑘
𝑚𝑖𝑛⁄ ≤ 𝐹𝑘,𝑡 ≤ 𝜃𝑓𝑟,𝑘,𝑡 − 𝜃𝑡𝑜,𝑘,𝑡 𝑋𝑘

𝑚𝑎𝑥⁄  (19) 

Equations (20)–(42) outline the formulation of the model used to optimally allocate the D-FACTS devices as 

follows: 

min 𝑂𝐹1 = ∑ 𝑃𝑡 (∑ (
∑ 𝐶𝑔,𝑠𝑒𝑔

𝑙𝑖𝑛𝑒𝑎𝑟𝑃𝑔,𝑡
𝑠𝑒𝑔𝑁𝑠𝑒𝑔

𝑠𝑒𝑔=1 + 𝐶𝑔
𝑈𝑅𝑔,𝑡

𝑈

+𝐶𝑔
𝐷𝑅𝑔,𝑡

𝐷 + 𝐶𝑔
𝑁𝐿

) + ∑ 𝑐𝑟𝑃𝑟,𝑡
𝐶𝑁𝑟

𝑟=1

𝑁𝑔

𝑔=1 ) 
𝑁𝑡
𝑡=1 + 𝐶𝑖𝑛𝑣

𝐷   (20) 

min OF2 = (∑ (𝑃𝑡 ∑ ∑ 𝐺𝑊𝑃𝑔,𝑐,𝑡
𝑁𝑐
𝑐=1

𝑁𝑔

𝑔=1 )
𝑁𝑡
𝑡=1 )  (21) 

𝑃𝑔,𝑡 = ∑ 𝑃𝑔,𝑡
𝑠𝑒𝑔𝑁𝑠𝑒𝑔

𝑠𝑒𝑔=1   (22) 

𝑃𝑔
𝑚𝑖𝑛 ≤ 𝑃𝑔,𝑡 ≤ 𝑃𝑔

𝑚𝑎𝑥  (23) 

−𝐹𝑘
𝑚𝑎𝑥 ≤ 𝐹𝑘,𝑠 ≤ 𝐹𝑘

𝑚𝑎𝑥  (24) 

∑ 𝐹𝑘,𝑡𝑘∈𝜎+(𝑛) − ∑ 𝐹𝑘,𝑡𝑘∈𝜎−(𝑛) + ∑ 𝑃𝑔,𝑡𝑔∈𝑔(𝑛) + ∑ (𝑃𝑟,𝑡 − 𝑃𝑟,𝑡
𝐶 )𝑟∈𝑟(𝑛) = 𝐿𝑛,𝑡  (25) 

∑ 𝑅𝑔,𝑡
𝑈𝑁𝑔

𝑔=1 ≥ 𝑆𝑈  (26) 

∑ 𝑅𝑔,𝑡
𝐷𝑁𝑔

𝑔=1 ≥ 𝑆𝐷  (27) 
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𝑅𝑔,𝑡
𝑈 ≤ 𝑃𝑔

𝑚𝑎𝑥 − 𝑃𝑔,𝑡  (28) 

𝑅𝑔,𝑡
𝐷 ≤ 𝑃𝑔,𝑡 − 𝑃𝑔

𝑚𝑖𝑛  (29) 

𝑅𝑔,𝑡
𝑈 ≥ 0  (30) 

𝑅𝑔,𝑡
𝐷 ≥ 0  (31) 

Δ𝜃𝑘
𝑚𝑖𝑛 ≤ 𝜃𝑓𝑟,𝑘,𝑡 − 𝜃𝑡𝑜,𝑘,𝑡 ≤ Δ𝜃𝑘

𝑚𝑎𝑥  (32) 

𝜃1,𝑡 = 0  (33) 

𝑓𝑘,𝑡 (1 +
𝑥𝑘

𝐷

𝑙𝑘
𝜂𝐿) 𝑋𝑘𝐹𝑘,𝑡 ≥ 𝑓𝑘,𝑡(𝜃𝑓𝑟,𝑘,𝑡 − 𝜃𝑡𝑜,𝑘,𝑡)  (34) 

𝑓𝑘,𝑡 (1 +
𝑥𝑘

𝐷

𝑙𝑘
𝜂𝐶) 𝑋𝑘𝐹𝑘,𝑡 ≤ 𝑓𝑘,𝑡(𝜃𝑓𝑟,𝑘,𝑡 − 𝜃𝑡𝑜,𝑘,𝑡)  (35) 

0 ≤ 𝑥𝑘
𝐷 ≤ 𝑖𝑘

𝑚𝑎𝑥  (36) 

∑
𝑥𝑘

𝐷

max(𝑥𝑘
𝐷,1)

𝑁𝑘
𝑘=1 ≤ 𝑙𝑚𝑎𝑥

𝑎𝑙𝑙𝑜𝑐  (37) 

𝐺𝑊𝑃𝑔,𝑐,𝑡 = ∑ 𝐻𝑔,𝑠𝑒𝑔
𝑙𝑖𝑛𝑒𝑎𝑟𝑃𝑔,𝑡

𝑠𝑒𝑔
𝐺𝑔,𝑡𝑊𝑐

𝑁𝑠𝑒𝑔

𝑠𝑒𝑔   (38) 

𝐶𝑖𝑛𝑣
𝐷 = ∑ 3𝐶𝑠ℎ

𝐷 𝑥𝑘
𝐷𝑁𝑘

𝑘=1   (39) 

𝐶𝑖𝑛𝑣
𝐷 ≤ 𝐶𝑖𝑛𝑣

𝑚𝑎𝑥  (40) 

𝐶𝑠ℎ
𝐷 = 𝐶𝑠𝑖𝑛𝑔𝑙𝑒

𝐷 𝐼(1+𝐼)𝑁

8760((1+𝐼)𝑁−1)
  (41) 

0 ≤ 𝑃𝑟,𝑡
𝐶 ≤ 𝑃𝑟,𝑡  (42) 

The objective of the first problem was to minimize the total operating system costs, which included D-FACTS 

investment, reserve, and generation costs, as formulated in Equation (20). The objective of the second problem—

to minimize the GWP—was included in the formulation of Equation (21). The linear segments of the generation 

cost curve were determined by Equation (22). Equation (23) was used to determine the upper and lower 

generation limits of each generator. The transmission line limits were determined by Equation (24), and the power 

balance at each bus was determined by Equation (25). The reserve requirements were defined by constraints 

formulated in Equations (26)–(31). The reserve capacities were determined by Equations (28) and (29). The voltage 

angle limits between two buses were defined by Equation (32), while Equation (33) was used to determine the 

reference voltage angle. The DC power flow equations for each line are formulated in Equations (34) and (35). The 

maximum number of D-FACTS devices that can be installed on a line was determined by Equation (36). Equation 

(37) was used to determine the maximum number of lines that these devices can be installed on. The GWP of each 

generator was determined based on each contaminant the generator emits using the linearized heat-based 

emission curves formulated in Equation (38). The factors for the GWP calculations were obtained from 72. The 

total investment cost was determined by Equation (39); Equation (40) was used to define the limit of this 

investment. The total investment costs were expressed as an hourly interval using Equation (41). Finally, the 

renewable energy curtailment limits were determined by Equation (42). 
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Evolutionary algorithms are increasingly popular thanks to their quick convergence and low computational burden. 

The MOEA was implemented to produce a Pareto front with solutions to the D-FACTS allocation problem in which 

every objective to optimize is not objectively better than the other (i.e., each objective is considered 

nondominant). The first iteration of the algorithm generated random candidate solutions, while subsequent 

iterations resulted in better solutions by performing a crossover operation. Each solution was fed into a simplified 

linear model formed by Equations (3)–(8) and (15)–(25), where nonlinearities formed by the 𝑥𝑘
𝐷 variable were 

solved by the MOEA’s assignment of these values. This process minimized the operating costs and the GWP at the 

same time, where the cost was prioritized.  

The algorithm first generated a set of possible solutions. A reduced linear model was used to allocate the power 

generation through the network to meet demand and satisfy all constraints. Next, a greedy algorithm was used to 

allocate the reserve requirements before obtaining objective function values for each candidate solution. The 

Pareto dominance of each solution was checked, and nondominant solutions were stored separately before using 

a unified fitness metric to rank the solutions and generate new candidates that return for testing. After a set 

number of iterations, all the stored solutions were checked again for dominance, and the nondominant solutions 

were returned by the algorithm. After using the MOEA to allocate the D-FACTS devices to the transmission lines, 

set points were obtained, and this data were then inputted into the models described in Equations (1)   (17) to 

determine the marginal generators and binding transmission lines needed to solve for the MEFs. 

Impact of EV Charging Stations on LMEs 
Based on the MEF model, we were able to identify several location candidates for EV charging facilities. These 

location candidates had relatively low LMEs for hazardous gases, promoted environmental equity, and were close 

to neighborhoods with relatively large numbers of EV owners. However, electricity price was also an important 

factor for consideration. In term of costs, the locational marginal price (LMP) was considered. The MEFs and LMPs 

were obtained from the model on an hourly basis for a desired period of time and then analyzed at different 

buses. Locations with relatively low MEFs and LMPs were identified for EV charging stations. 

Equity in Access to EVs and EV Charging in URCs in the Paso del Norte Region 
In this study, we examined the perceptions, opinions, and knowledge of EVs, EV ChSs, and ERWs in URCs in the 

Paso del Norte region of Texas, and determined whether participants had a desire to have these technologies 

installed in their own neighborhoods. Toward this purpose, we conducted 3 focus groups and obtained 221 

completed surveys. Herein, we present the focus group findings only. 

The research included a focus group questionnaire that followed the Institutional Review Board (IRB) approval 

protocol. Key participants included current residents of each community, who were considered to be the best 

candidates to convey their experiences and perspectives regarding residency in the neighborhoods. Participation 

was open to any resident of these areas who was at least 18 years of age. The questionnaire included the following 

sections and topics: 

• Section I: Perceptions of local AQ and EVs as environmental benefit. 

• Section II: Knowledge and perceptions of EVs. 

• Section III: Knowledge and perceptions of EV purchases and incentives. 

• Section IV: Knowledge and perceptions of EV ChSs and ERWs. 

The data were analyzed using qualitative research methods with the use of the MAXQDA qualitative data analysis 

software. The study considered the following vehicle types [73], [74], [75]: 

• Battery electric vehicles (BEVs): EVs fully powered by plug-in rechargeable electric batteries. 



 

13 
 

• Hybrid electric vehicles (HEVs): EVs powered by an electric motor and a fuel engine simultaneously (the 

fuel engine recharges the battery that powers the electric motor). 

• Plug-in hybrid electric vehicles (PHEVs): EVs powered by an electric motor and gasoline engine (the 

electric motor is powered by a plug-in rechargeable electric battery and the gasoline engine is used as a 

backup). 

• ICEVs: Conventional gasoline and diesel engine vehicles. 

 

 Selection of Communities 
The EPA environmental justice screening and mapping tool (EJScreen) [76] and the Texas Commission on 

Environmental Quality monitoring stations [77] were used to select the communities for study based on their 

majority-minority populations, proportions of low-income residents, and high levels of GHG and fine particulate 

matter (PM2.5) pollutants. The communities selected for study were Chihuahuita, Montana Vista, and Anthony, 

Texas. These locations are shown in Figure 2 and described in Error! Reference source not found.. 

 

 

Figure 2. Communities selected using EJScreen: 1=Chihuahuita, 2=Montana Vista, and 3=Anthony, Texas. 
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Table 1. Overview of Selected Communities 

Community Age 
Group 
(years) 

Education 
Level 

Annual 
Household 

Income 
($1,000) 

Technology 
Perceptions 

Neighborhood Overview 

Chihuahuita 35–65 Some high 
school and 
associate’s 

degrees 

17–38 Advantages: EVs could 
potentially enhance 

community’s air 
quality. 

Disadvantages/ 
Concerns: 

Initial EV costs and 
historic district design 

restrictions that 
prevent installation of 

ChSs and ERWs. 

Affected by pollution from a bus 
station and downtown commercial 
areas nearby, US-62 and Loop 375, 
a commercial railroad that bisects 

the neighbor and blocks access 
to/from the community, the 

neighboring Mexican border city of 
Juarez, and the continuously 

operated Santa Fe international 
port of entry [15], [40]. Participants 
were unaware of their downtown 

access to EV ChSs, EV purchase 
incentives, or ERWs. 

Montana 
Vista 

25–55 High 
school and 

college 

38–75 Advantages: EVs 
(especially pickups) 

could potentially 
facilitate work 

activities. Especially 
interested in at-home 

ChSs. 
Disadvantages/ 

Concerns: Initial EV 
cost, ERW potential 
for increasing taxes 

and causing 
community power 
outages, and ERW 
construction and 
maintenance cost 
responsibilities. 

Rural, middle-age, working-class 
community located in far east El 

Paso County [82]. Affected by 
pollution from US-62 and a nearby 

electric plant. Participants 
perceived EVs as useful for their 
unincorporated work, had some 
knowledge of in service EV ChSs 

and their locations but were 
unaware of EV purchase incentives 

and ERWs. 

Anthony 45–65 High 
school and 

college 

49–75 Advantages: EVs 
viewed as highly 

beneficial for cleaner 
air and cost- effective 
compared to ICEV’s 

fuel expenses.  
Disadvantages/ 

Concerns: 
Initial EV cost and 

potential for helping 
drivers prevent 
accidents, ERW 

potential for causing 
traffic congestion or 

community power 
outages. 

Unincorporated town in far west El 
Paso County [82] with mostly 

retirees. Affected by pollution from 
nearby commercial areas, I-10, and 
gas stations that include rest areas. 

Participants perceived EVs to be 
beneficial but had no knowledge of 

EV purchase incentives or ERWs. 
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Chihuahuita, Texas 
Chihuahuita is a historic district located in south downtown El Paso on the border between Mexico and the United 

States. It is the oldest neighborhood in the city, and most participants have lived there for over 20 or 30 years [78], 

[79]. This community is vulnerable to multiple environmental hazards including pollution from the commercial 

areas of the nearby downtown; the urban bus terminal; US-62 (Paisano Drive) located a few blocks away; Loop 375 

that passes above the community; the commercial railroad that bisects the community and blocks the only 

entry/exit point to and from the community when a train travels through; the neighboring Mexican border city of 

Juarez that is located immediately south of the neighborhood; and the Santa Fe international port of entry that 

operates 24 hours a day, seven days a week. As a historic district, this community has specific design guidelines 

established by the city for restoration and/or new construction in the neighborhood that could modify or affect its 

original historic construction and preservation [80]. This, in turn, prevents them from any contemporary additions 

or modifications, such EV ChSs or ERWs. 

The perceptions of EVs from most members of this community were positive. They felt that EVs could make a 

considerable difference in improving their air quality (AQ) due to the pollution they face, specifically from different 

sources of traffic. Nevertheless, they considered EVs out of their reach mainly due to initial costs. Regarding ChSs 

and ERWs, they again perceived these technologies to be out of their reach due to the historic district restrictions 

that could prevent ChSs and ERWs from being installed in their neighborhood. These factors made them lack 

interest in EV adoption. They were also unmoved by the existence of incentives and tax rebates available for EV 

purchase and the easy access to a public EV ChSs within one mile of their downtown neighborhood. The 

community members had never heard about ERWs before. Although they considered them to be a great resource 

because they would eliminate the need to drive to a charging station, they noted that most of their community 

members could not afford an EV, and thus, ERWs would not be useful for them. 

Montana Vista, Texas 
Montana Vista is an unincorporated rural community located in far east El Paso County and part of the 

metropolitan statistical area [81]. Some participants have lived in this neighborhood for less than 3 years, while 

other have lived here for over 10 years. Although Montana Vista has a power plant nearby and the highly 

trafficked US-62/180 (Montana Avenue) going through their neighborhood, the community members do not have 

big environmental concerns. 

Participants of this middle-age, working-class community were in favor of the EV technology. Although they 

perceived it as costly, they showed great interest in the benefits that the technology could provide for their work. 

Their main EV inquiries included the availability of heavy-duty pickups, maximum payload capacities, and 

maximum distance traveled per charge on a full load. Regarding ChSs, they knew that El Paso had a public ChSs in 

service and that no similar ChSs were located near their community. 

With respect to ERWs, the topic was fully unknown to this community. They perceived ERWs as useful because 

they would eliminate ChSs and EV range anxiety but unnecessary for now given the small number of EVs in their 

neighborhood. The topic did, however, generate particular interest about the effects of electrification on human 

health, user safety, and construction and maintenance costs, as well as its effects on their community power 

supply. 

Anthony, Texas 
Anthony is an unincorporated rural community located in far west El Paso County [81]. This community—

comprised mostly of retirees—perceived EVs as highly beneficial because they help provide better air quality and 

are cost-effective compared to a regular internal combustion engine vehicle’s ICEV’s) fuel expenses. The 

community is vulnerable to nearby traffic pollution from I-10, commercial areas, gas stations that include rest 

areas for travel trailers, and a local elementary school. 
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The members of this community were particularly interested in what EVs can offer them in terms of safety, 

comfort, and savings. Their primary inquiries included whether EVs offer new technologies, such as movement and 

vehicle detection to prevent accidents (i.e., whether EVs can drive autonomously if the driver experiences a heart 

attack or other medical emergency), and whether EVs require less maintenance than ICEVs. They also perceived 

EVs as costly and had no knowledge of incentives or tax rebates availability for EV purchases. Once they were 

made aware of the potential for cost savings, their interest to learn about the topic increased. 

Regarding ChSs, this community had some knowledge about stations in service in the city but did not know much 

about the locations or approximate numbers. Thus, they perceived having charging stations installed in their 

neighborhood as beneficial if they eliminate the need to drive some distance to a station and EV range anxiety. 

Regarding ERWs, this community had never heard about this technology. Their perceptions were positive yet they 

expressed concerns about ERWs construction and maintenance that may cause traffic issues and the effects on 

their community’s power supply. 

Results 

Tracking the Source of Marginal Electricity Generation 
To build the energy source tracking system, a modified RTS-96 was used to implement the models. This test system 

included renewable generation from nuclear and hydroelectric generators. The system determines the change in 

generation of the marginal generators according to a 24-hour period of operation. Each bus was injected with an 

increased load of 1 MW to solve for each scenario of marginal generation change. This model uses a mixed-integer 

linear program based on a multi-period optimal DC power flow formulation and was solved using the Gurobi 

Optimization Solver in the Linux environment. Furthermore, the ramping constraints were modified to be one-fifth 

of the original.  

In this study, the change in generation was in response to a load increase of 1 MW at a predetermined bus. This 

increase in load would be serviced by several generators, and the exact amount of power they contributed was 

determined by the program. In this way, the amount of power from renewable generators can be accurately 

tracked.  

Load Increase Cost Comparison 
Figure 3 shows the cost comparison for hours 1 and 5 when the load was increased by 1 MW at all 24 busses in the 

test system. Specifically, this figure compares the costs in U.S. dollars for the marginal generators to provide the 

extra load at each bus for hours 1 and 5. As can be seen from the results, the cost to meet this load can vary 

depending on the bus injection and hour of operation. In this case, the costs at hour 5 were almost always lower 

than the costs at hour 1 across all busses. Changing the hour of operation can consistently decrease costs. 

Figure 4 and Figure 5 show the cost comparisons over 24 hours for bus 13 and bus 17, respectively. At bus 13, all 

hours yielded an increase in costs to serve the load, while the extra load caused the price to decrease at bus 17. 

From these results, the cost will always be positive or negative for certain busses (i.e., the locational marginal price 

was positive at bus 13 and negative at bus 17). During all hours of operation, if the load is increased at bus 17, the 

price will always decrease. This phenomenon related to the reduction in price is interesting to note if certain load 

zones are specifically targeted to be increased. 

Finally, Figure 6 illustrates the functional relationship between the cost, bus injection, and time to meet the 1 MW 

load increase. The surface plot displays all hours and busses for the RTS-96 simulation. The costs fluctuated based 

on the location of the load increase and the hour of operation. Additionally, most hours had a similar price 

depending on the bus load increase, making it possible to predict the cost for meeting the load in the next hour. 
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Figure 3. Load increase cost comparison (hours 1 and 5). 

 

Figure 4. Load increase cost comparison for bus 13. 
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Figure 5. Load increase cost comparison for bus 17. 

 

Figure 6. Load increase cost comparison (all busses and hours). 

Change in Generation Analysis 
Table 2 shows the change in generation for several marginal generators for a load increase at bus 1 and hour 14. It 

lists the kind of generators being used as well as the exact amount of generation in MW to meet the demand. As 

mentioned previously, the change in load is always consistent for each bus meaning the change in generation 
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shown in the table must add up to 1 MW. Marginal generators 8, 11, 22, and 31 contributed to this 1 MW load. 

Marginal generator 22 is a nuclear generator that produced 0.0336222 MW of power and marginal generator 31 is 

a coal/steam generator that produced 0.0337058 MW of power. All other contributing marginal generators are 

oil/steam generators. The purpose of this study was to track renewable generation, which was determined using 

this method. The exact amount of nuclear generation was determined for this location and time. Although nuclear 

energy is not renewable, this example demonstrates how this method could be used to track renewable 

generators when implemented into the test system, which was the next step in this study.  

Table 2. Change in Generation at Bus 1 (Hour 14) 

Marginal Generator 
Number (Hour 14) 

Generator Type Change in Generation at Bus 1 
(1 MW Load Increase) 

8 Oil/Steam 0.925789 

10 Oil/Steam 0 

11 Oil/Steam 0.0068832 

12 Oil/Steam 0 

21 Nuclear 0 

22 Nuclear 0.0336222 

31 Coal/Steam 0.0337058 

Table 3 shows the change in generation at bus 21 and hour 8. The 1 MW load increase at this bus was served solely 

by nuclear generator 22 at this hour; marginal generator 22 is located directly on bus 21 and was thus most 

feasible for serving the whole load. This capacity would not be possible if the generator was not marginal or if it 

were to be turned off in a different hour. 

Table 3. Change in Generation at Bus 21 (Hour 8) 

Marginal Generator 
Number (Hour 8) 

Generator Type Change in Generation at Bus 21 
(1 MW Load Increase) 

8 Oil/Steam 0 

10 Oil/Steam 0 

11 Oil/Steam 0 

12 Oil/Steam 0 

13 Oil/Steam 0 

21 Nuclear 0 

22 Nuclear 1 

31 Coal/Steam 0 

Table 4 and Table 5 show the change in generation at bus 11 and hours 10 and 1, respectively. At hour 10, nuclear 

generator 21 decreased in generation by −0.00840193 MW, while all other fossil fuel generators increased in 

generation. This trend can be used to track the increase/decrease of renewable generation for certain hours by the 

test system. At hour 1, marginal generation changed despite being at the same bus. First, the number of marginal 

generators significantly increased compared to hour 10. Depending on the time, certain generators will change 

generation and be turned off or on, causing the number of marginal generators to change; this dynamic must be 

accounted for in the test system. In this case, the higher number of generators can also include those generators 

that were generating at their minimum. Thus, the excess marginal generators may not be needed in hour 1, but 

they may be needed to make this approach feasible across all hours. Also, nuclear generator 22 produced 

0.0395054 MW this hour compared to the decrease in generation at hour 10. Most of the load was still met by 

marginal generator 6, which is a coal/steam generator.  
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Table 4. Change in Generation at Bus 11 (Hour 10) 

Marginal Generator 
Number (Hour 10) 

Generator Type Change in Generation at Bus 11 
(1 MW Load Increase) 

8 Oil/Steam 0.48919 

10 Oil/Steam 0 

11 Oil/Steam 0.405232 

12 Oil/Steam 0 

21 Nuclear −0.00840193 

31 Coal/Steam 0.11398 

Table 5. Change in Generation at Bus 11 (Hour 1) 

Marginal Generator 
Number (Hour 1) 

Generator Type Change in Generation at Bus 11 
(1 MW Load Increase) 

2 Coal/Steam 0 

3 Coal/Steam 0 

6 Coal/Steam 1.29285 

7 Coal/Steam 0 

8 Oil/Steam 0 

10 Oil/Steam 0 

11 Oil/Steam 0 

12 Oil/Steam 0 

13 Oil/Steam 0 

19 Coal/Steam −0.332352 

21 Nuclear 0 

22 Nuclear 0.0395054 

29 Coal/Steam 0 

31 Coal/Steam 0 

Reducing Marginal Emissions in Power Systems with Distributed Flexible AC Transmission 

Systems 

Step 1: D-FACTS Allocation Results 
This simulation was run with 100 possible solutions over 100 iterations. The cost of a D-FACTS device was 

estimated at $3,000 with a discount rate of 6 percent over 30 years, based on previous literature [5]. Figure 7 

shows the Pareto-optimal solutions. 

The solution marked in red was selected as the most ideal for use in the marginal load and marginal emission 

analysis. The base case with no D-FACTS devices installed had an expected hourly cost of $39,237 and an expected 

GWP of 40,230. By comparison, the selected solution also had an expected hourly cost of $39,237, including the 

expected hourly cost of the D-FACTS, but a much-reduced GWP of 40,002. 

Table 6 summarizes the D-FACTS allocation results for the selected solution. Next, the new reactances of the lines 

and the marginal emissions were calculated. 

Table 6. D-FACTS Allocation Results 

Line Number of 
D-FACTS Devices 

Set Point (%) 

1 18 0.14 

10 9 0.18 

31 12 2.53 
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Figure 7. Pareto front: Cost vs. GWP. 

Because the investment cost of the D-FACTS is considered in the objective function, the objective value for the 

case with the D-FACTS is lower than the case without the D-FACTS, indicating that the total savings in power 

system operating costs over the lifetime of the D-FACTS were higher than the system’s investment cost. The 

operating cost savings were due to the transmission flexibility and redeployability that D-FACTS devices provide. In 

addition to the cost savings, the D-FACTS reduced the CO2 emissions, reducing the GWP by approximately half a 

percentage point. Because the annual CO2 emissions from electricity generation is more than 1.5 million metric 

tons in the United States, a half a percentage point reduction equates to more than 7,500 metric tons, which is a 

significant amount. With more variety of generating resources being integrated, the emissions can be further 

reduced.  

Step 2: Marginal Emission Results 
Figure 8 shows the marginal CO2 emissions produced every hour of the day when the load was increased by 1 MW 

at the bus representing Fort Bliss. This figure shows the results of the emissions generated without the allocation 

of D-FACTS devices in the El Paso power system. Between hours 7 and 22, the marginal emissions remained at a 

constant value of about 820 lb/MWh. In addition, the emissions decreased to about 709.6 lb/MWh during the 

morning and evening hours, which is consistent with the behavior of real power plant load curves. Less power is 

consumed at hours of less activity for consumers. The total marginal emissions produced at this location for the 

whole day was found to be 19,197.65 lb/MWh. Finally, the total marginal emissions for all buses and hours were 

460,743.7 lb/MWh without the allocation of D-FACTS devices.  

Next, Figure 9 shows the marginal CO2 emissions produced every hour of the day when the load was increased by 

1 MW at Fort Bliss with the allocation of D-FACTS devices. The data shown in this figure were generated based on 

the changes in reactances of each transmission line when D-FACTS devices were installed in the same test system. 

The emissions emitted during the morning and evening hours were constant at around 709.6 lb/MWh. However, 

the emissions decreased sharply throughout the day instead of remaining mostly constant as was the case without 

the allocation of D-FACTS devices (Figure 8). Thus, the allocation of D-FACTS devices caused a notable decrease in 

the marginal emissions produced in the same test system. Furthermore, the total marginal emissions produced at 
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this bus during a 24-hour period of operation were 18,231.21 lb/MWh; 966.44 lb/MWh less than the emissions 

produced without the allocation of D-FACTS devices (Figure 8). 

 

Figure 8. Marginal emissions vs. time without D-FACTS allocation. 

 

Figure 9. Marginal emissions vs. time with D-FACTS allocation. 
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The total marginal emissions across all locations and times with the allocation of D-FACTS devices yielded 

437,549.1 lb/MWh; 23,194.6 lb/MWh less than the emissions produced without the allocation of D-FACTS devices 

(Figure 8). These findings further illustrate the environmental benefits of optimally allocating D-FACTS modules 

into a system. Figure 10 further illustrates these improvements by showing the differences in marginal emissions 

between a system with and without D-FACTS devices. Across almost all hours, the emissions decreased when D-

FACTS devices were installed compared to when they were not. During some hours, such as hour 1, significant 

reductions in emissions of up to 110.4 lb/MWh occurred. The noticeable savings in emissions are important for 

increasing the sustainability of the grid. 

 

Figure 10. Difference in marginal emissions with D-FACTS allocation. 

Achieving an Environmentally Aware Allocation of Electric Vehicle Charging Stations 
The simulation executed the model for every hour of a representative year. The problem was solved using the 

Gurobi Optimization Solver in the Linux environment and the ramping constraints were changed to be one-fifth of 

the original. The generators operating at their minimum production levels were considered as marginal generators 

in this study to maintain feasibility during some hours of operation.  

From the simulations, the MEFs and generation costs induced by a 1 MW load increase at different buses in each 

hour were obtained. This section describes the selection process for potential EV charging station installation 

locations and presents analysis results for the MEF and power system operating cost increases induced by a 1 MW 

EV load at each of the selected locations. 

EV Charging Station Location Selection 
In this study, buses 18, 21, and 23 were chosen for as EV charging station locations. Bus 18 was selected due to its 

lowest average MEF. Bus 21 was chosen because of its lowest average cost throughout the year. Finally, bus 23 

was selected because it had the second lowest average cost and the fifth lowest average MEF for the year. Table 7 

shows the five lowest average costs and emissions corresponding to each bus. Several buses overlapped; selecting 

certain locations can minimize both cost and emissions when charging. Both LMPs and MEFs can be negative when 

transmission congestion exists in the system. 
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Table 7. Lowest Average Costs and Emissions 

Bus Costs ($) Bus Emissions (lb/MWh) 

21 -64.6924 18 -725.247 

23 -52.4895 17 -720.028 

18 -45.3587 21 -165.681 

17 -24.7879 22 -101.379 

22 -16.8267 23 211.82 

Load Increase Emission Analysis 
Figure 11 shows the average emissions produced by the 1 MW load increase, or MEFs, at buses 18, 21, and 23 for a 

typical day of the year. The curves show the MEFs in different hours of a typical day at these three locations. Bus 

18 had the lowest emissions throughout the day. In fact, all the MEFs were negative for this bus except at hours 6 

and 7. The highest emissions occurred at hour 6, reaching about 142.8 lb/MWh. In comparison, the MEFs at bus 21 

were higher than those found in the previous bus except at certain times. The highest value reached was 

3,905.8 lb/MWh at hour 7, which was higher than any of the chosen buses. Next, the figure illustrates that most of 

the MEFs at bus 23 were positive. The negative MEFs for this bus occurred between hours 10 and 15. Thus, bus 23 

produced more emissions overall than the other buses when the load was increased. In addition, the peak 

emissions for this location (1,793.6 lb/MWh) were reached at hour 7. 

Figure 12 shows the total emissions produced by a 1 MW load increase at buses 18, 21, and 23 during each season 

of the year. As can be seen from the results, the sum of emissions for each season at bus 18 were negative, 

indicating that the increase in load from EV charging at this location would reduce the emissions produced in the 

power system throughout the year. The summer and winter seasons yielded the largest decreases in emissions. 

The reduction in emissions during winter was found to be −3,006,271 lb/MWh, which was the lowest of the three 

buses. The total emissions during fall and spring were negative for bus 21. However, the sum of emissions for 

summer and winter were positive. The largest rise in emissions at this location occurred during the winter, 

reaching a total of 88,949.9 lb/MWh. Finally, the total emissions for all seasons except winter were positive for bus 

23. The winter season showed a total decrease in emissions of −20,611 lb/MWh, while the fall season showed an 

increase of 903,857.4 lb/MWh (the highest of the three buses). Based on the sum of emissions, bus 18 showed the 

highest reduction in emissions, while bus 23 showed the highest production of emissions. 

 

Figure 11. Average emission increase profile for a typical day (buses 18, 21, and 23). 
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Figure 12. Total emission increase per season (buses 18, 21, and 23).Load Increase Cost Analysis 
Figure 13 shows the average costs to meet the 1 MW increase in demand at buses 18, 21, and 23 for a typical day 

of the year. The cost for each hour at bus 18 was negative and fluctuated according to time. The lowest cost was 

found to be −$87.4 at hour 16. Like bus 18, bus 21 also had all negative costs associated with the increase in load. 

In select instances, the costs were higher at bus 21 than bus 18, but the costs for bus 21 were lower overall due to 

the sharp decreases in cost at certain hours. In fact, the lowest cost was found to be −$209 at hour 7. The costs of 

meeting the demand at bus 23 was also found to be mostly negative throughout the day. The highest cost ($4.6) 

was found at hour 1. The costs at all buses decreased sharply between hours 5 and 8. Furthermore, bus 21 had the 

lowest average cost because of sharp drops in price throughout the day. Additionally, bus 23 showed lower prices 

overall when compared to bus 18 between hours 7 and 23. For this reason, bus 23 had the second lowest average 

cost.  

 

Figure 13. Average cost increase profile for a typical day (buses 18, 21, and 23). 
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Figure 14 shows the total costs of meeting the increase in load at buses 18, 21, and 23 during each season of the 

year. The total costs for each season at all buses were negative due to the objective function’s aim of minimizing 

the cost, which made the prices negative. Bus 18 had the lowest total costs during summer and winter. The lowest 

cost for this bus was found to be −$201,942.9 in the winter, which was the lowest total cost observed among the 

three buses. Bus 21 had the lowest costs during the fall and winter seasons. The lowest total cost for this bus was 

found to be −$189,928.7 in the winter season. Finally, the lowest costs for bus 23 were found during summer and 

winter. Again, the lowest total cost for this location was found to be −$189,477 in the winter season, which was 

slightly lower than the lowest total cost found at bus 21. The results showed that the reduction in overall cost was 

highest at bus 21 because it had the lowest prices consistently throughout the seasons. 

 

Figure 14. Total cost increase per season (buses 18, 21, and 23). 

Change in Generation Analysis 
Table 8, Table 9, and Table 10 show the change in generation for the marginal generators in response to a 1 MW 

increase in load at hour 17 on day 190. Table 8 shows that marginal generators 14, 23, and 32 contributed toward 

meeting the increase in load. During this time of day, the MEF was found to be −533.8 lb/MWh, and the cost to 

meet the demand was −$10.55. Reducing the generation from fossil fuel generators at this hour, while not 

emitting any new emissions through the nuclear generator, reduced this impact on the power system. In addition, 

the cost for meeting the demand was negative because the generators that reduced their power were operating in 

segments that were more expensive. Furthermore, the cost of the nuclear generator at segment 4 was only $2.36, 

which further contributed toward the reduction in price.  

Table 9 shows the change in generation at bus 21 at the same hour and day. Marginal generators 13, 14, and 23 

contributed to meeting the increase in demand. The MEF was found to be −2645.7 lb/MWh, and the cost to meet 

the demand was −$158.8. The significant reduction in emissions can be explained by the curtailment of −39.4 MW 

at generator 14. The program offset this curtailment by increasing the generation at generator 13 by the same 

amount. The emission rate at generator 14 was higher than generator 13, leading to the high reduction in 

emissions. The load was also met by nuclear generator 23, which produced no emissions. The cost also decreased; 

generator 13 was less expensive to operate than generator 14 at segment 4, and generator 23 only cost $2.36. 

Next, Table 10 shows the change in generation for bus 23 at the same hour and day. The increase in load was met 

in part by generators 13 and 14, similar to bus 21. However, unlike bus 21, the remaining portion of the 1 MW of 

demand was met using coal/steam generator 31 instead of the nuclear generator. This generator produced more 
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emissions than the nuclear generator, which changed the MEF to −776.7 lb/MWh. Additionally, the cost was found 

to be −$141.3 because the cost in the piecewise linear segment 3 for generator 31 was $19.85. 

Table 8. Change in Generation at Bus 18 (Day 190) 

Marginal Generator 
Number (Hour 17) 

MEF: −533.80 lb LMP: −$10.55 Change in Generation at Bus 
18 (1 MW Load Increase) Emission rate (lb/MW) Generation Cost ($/MW) 

14 1635.40 99.66 -0.096 

23 0 2.36 1.290 

32 1941.24 20.61 -0.194 

Table 9. Change in Generation at Bus 21 (Day 190) 

Marginal Generator 
Number (Hour 17) 

MEF: −2645.71 lb LMP: −$158.79 Change in Generation at Bus 
21 (1 MW) Emission rate (lb/MW) Generation Cost ($/MW) 

13 1568.25 95.57 39.4 

14 1635.40 99.66 -39.4 

23 0 2.36 1 

Table 10. Change in Generation at Bus 23 (Day 190) 

Marginal Generator 
Number (Hour 17) 

MEF: −776.71 lb LMP: −$141.30 Change in Generation at Bus 
23 (1 MW) Emission rate (lb/MW) Generation Cost ($/MW) 

13 1568.25 95.57 39.4 

14 1635.40 99.66 -39.4 

31 1869 19.85 1 

Ensuring Equity in Access to EVs and EV Charging by Examining Perceptions, Opinions, and 

Knowledge in URCs in the Paso del Norte Region 

Demographics 
The survey sample (n=221) included comparable participation of males (45 percent) and females (54 percent), a 

high percentage of Hispanics (87 percent), a low percentage of Whites (8 percent), and lower percentages of 

Asians (1.5 percent) and American Indians (0.5 percent). The sample included mainly young participants belonging 

to the 18–24 (40 percent) and 25–34 (27 percent) age groups. The lowest participation of both males and females 

occurred for the 56–64 (3 percent) age group. Regarding highest level of education, respondents reported having 

completed some college, meaning they attended college and did not graduate or are still attending college (32 

percent); graduated from high school (18 percent); and earned an associate’s degrees (16 percent). Regarding 

annual household income, respondents reported earning $25k–49k (26 percent), $50–74K (23 percent), and less 

than $25K (16 percent). Fewer respondents reported earning $75–99K (13 percent), $100–149K (7 percent), and 

more than $150K (1 percent), and 14 percent preferred not to answer. Table 11 presents the demographics of the 

sample. 

Perceptions of the Environment 
Participants were asked to indicate their familiarity with air pollution impacts on health and their level of concern 

with the air quality of their neighborhoods (Table 12) using a 5-point scale, with 1=not at all familiar to 

5=extremely familiar). Results showed a moderate familiarity regarding air pollution health impacts from almost 

half of the respondents (43 percent) and a slight familiarity from 20 percent of respondents. Neutral and extreme 

familiarities were reported by 17 and 16 percent of respondents, respectively. Only 4 percent of respondents 

reported being not at all familiar. Regarding AQ concerns in their neighborhoods, participants reported being 

moderately concerned (32 percent), neutral (26 percent), extremely concerned (21 percent), slightly concerned 

(16 percent), and not at all concerned (5 percent). 
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Table 11. Overview of Sample Demographics 

Attribute Number of 
Responses 

Percent
(%) 

 Attribute Number of 
Responses 

Percent
(%) 

Gender 
Female 

Male 
No response 

 
Ethnicity 
Hispanic 

White 
No response 

Asian 
American Indian 

 
Age group 

18–24 
25–34 
35–44 
45–54 
55–64 

65+ 

 
120 
100 
21 

 
 

192 
17 
8 
3 
1 
 
 

89 
59 
29 
25 
6 

13 

 
54 
45 
1 
 
 

87 
8 
3 

1.5 
0.5 

 
 

40 
27 
13 
11 
3 
6 

 Education level 
Less than high school 
High school graduate 

Some college 
Associate's 
Bachelor's 
Graduate 

Other 
 

Household income 
<$25K 

$25–$49K 
$50–$74K 
$75–$99K 

$100–$149K 
>$150K 

No answer 
 

 
11 
39 
72 
36 
35 
20 
8 
 
 

35 
57 
51 
29 
15 
3 

31 

 
5 

18 
32 
16 
16 
9 
4 
 
 

16 
26 
23 
13 
7 
1 

14 

 

Table 12. Familiarity with Pollution Health Effects and Concerns with Local AQ 

Attribute Number of 
Responses 

Percent 
(%) 

 Attribute Number of 
Responses 

Percent 
(%) 

Familiarity with pollution 
health effects 

Not at all familiar 
Slightly familiar 

Neutral 
Moderately familiar 
Extremely familiar 

 
 

8 
44 
38 
95 
36 

 
 

4 
20 
17 
43 
16 

 Concerns with local AQ 
Not at all concerned 
Slightly concerned 

Neutral 
Moderately concerned 
Extremely concerned 

 
11 
36 
58 
69 
47 

 
5 

16 
26 
32 
21 

Driving and Transportation Habits 
Participants were asked about their driving and transportation habits (Table 13), including their driving 

frequencies, approximate weekly vehicle miles traveled (vmt), and monthly fuel expenses.  

The majority of respondents (76 percent) reported driving daily, with weekly distances of 20–60 vmt 

(27.6 percent), 60–120 vmt (25.8 percent), more than 120 vmt (16.7 percent), and less than 20 vmt (5.9 percent). 

Another 12 percent of respondents reported driving more than three times per week, with weekly distances of 20–

60 vmt (7 percent), 60–120 vmt (3 percent), more than 120 vmt (1 percent), and less than 120 vmt (1 percent). 

Smaller percentages of the sample had a driving frequency of once a week (4 percent) or rarely driving (4 percent); 

the smallest percentage of the sample only drove once a month (2 percent). Figure 15 depicts these driving 

frequency results based on the weekly vmt. 

Regarding fuel expenses, participants reported monthly expenses of $60–99 (33 percent), $100–199 (30 percent), 

$40–59 (13 percent), and more than $200 (13 percent). Only 4 percent reported expenses of $20–39, and 

2 percent reported expenses less than $20. The remaining participants either did not know their approximate fuel 

expenses (2 percent) or did not have a vehicle (4 percent). Figure 16 depicts these fuel expenses based on the 
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weekly vmt. Some of the vmt results may seem inaccurate when contrasted with monthly fuel expenses. However, 

it is important to note that vehicles differ in size and fuel efficiency and that responses were presented exactly as 

given by participants. 

Table 13. Driving and Transportation Habits 

Attribute Number of 
Responses 

Percent 
(%)* 

 Attribute Number of 
Responses 

Percent 
(%)* 

Driving frequency 
Every day 

>3 times per week 
2–3 times per week 

Do not own a vehicle 
Once a week 

Rarely 
Once a month 

 
Monthly fuel expenses 

<$20 
$20–39.99 
$40–59.99 
$60–99.99 
$100–199 

>$200 
Do not know 

Do not own a vehicle 

 
168 
28 
8 
8 
4 
4 
1 
 
 

4 
10 
29 
72 
65 
29 
4 
8 

 
76 
12 
4 
4 
2 
2 
1 
 
 

2 
4 

13 
33 
30 
13 
2 
4 

 Average weekly vmt 
<20 miles 

20–60 miles 
60–120 miles 

>120 miles 
Do not own a vehicle 

 
21 
85 
67 
40 
8 
 
 

 
39 
30 
18 
10 
4 
 
 

*Percentages may not equal 100 percent because they were rounded to the nearest 10. 

  

Figure 15. Driving frequency and weekly vmt. Figure 16. Weekly vmt and monthly fuel expenses.  
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Knowledge of EV Technologies 
The focus group sessions provided valuable information regarding consumer perceptions, opinions and knowledge 

that could potentially affect EV adoption, including the use of ChSs and ERWs. As stated earlier, topics included 

local AQ, EVs, EV ChSs, and ERWs. No specific response was provided or required from participants; instead, they 

were asked to share only their personal perceptions and ideas. Table 14 presents the results of the sentiment 

analysis for the three communities. Responses per community are summarized in separate columns. Sentiment is 

represented with a square; a larger square size indicates a greater feeling or emotion intensity. Community 

responses can be compared horizontally across rows. No square indicates that no responses were obtained. 

 

Table 14. Focus Group Sentiment Analysis 
 

Section I: Perceptions of local AQ and EVs as an environmental benefit 

 
 

Section II: Knowledge and perceptions of EVs 

 
 

 

Section III: Knowledge and perceptions of EV purchases and incentives 



 

31 
 

 

Section IV: Knowledge and perceptions of EVs, ChSs, and ERWs 

 

 
 

 

Source: MAXQDA qualitative data analysis software. 

 

Perceptions of Local AQ and EVs as an Environmental Benefit 
The focus group sessions sought the respondents’ perceptions, opinions, and knowledge of major factors that 

affect their local AQ, AQ improvement needs, and EVs as a beneficial factor to improve local AQ. 

As shown in Section I of Table 14, participants from Montana Vista, in far east El Paso County, considered their AQ 

to be good, while participants from Chihuahuita expressed more concern regarding the pollution and fumes from 

nearby interstate highway traffic, commercial railroad traffic, activities in Ciudad Juárez in Mexico, and 

International Paso del Norte Port of Entry traffic. For participants from Anthony, major AQ concerns stemmed 

from the nearby I-10, gas stations, trailer rest areas, commercial areas, and schools. The three communities 

identified EVs as a technology able to positively improve their AQ. Participants from Anthony had the highest 

positive sentiments. Participants from Chihuahuita, despite having more factors affecting AQ, had lower positive 

sentiments due primarily to initial EV costs. Participants from Montana Vista had the lowest positive sentiments 

because they perceived their local AQ to be good. Participants from both Chihuahuita and Montana Vista agreed 

that replacing the current ICEVs transiting the interstates in their areas with EVs would be highly beneficial for 

their local AQ. 

Knowledge and Perceptions of EVs 
In the focus group sessions, we also evaluated EV perceptions, opinions, and knowledge in URCs to identify factors 

that may influence consumer preferences and behavior toward EV adoption in low-income minority populations. 
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As shown in Section II of Table 14, each of the three communities showed some degree of EV knowledge, although 

they felt unsure regarding its accuracy. They knew that EVs are available in the marketplace, that they help the 

environment and human health by reducing fuel emissions, and that they are more expensive than ICEVs. 

Participants from Montana Vista had some knowledge about different EVs in the marketplace, although they did 

not know them by name—only as cars that “use electricity only” (i.e., BEVs) or “use electricity and fuel” (i.e., 

HEVs). They did not know about PHEVs and their different components or characteristics. They also had some 

knowledge about home EV chargers. Participants from Anthony also knew about EVs as a new and cost-effective 

technology that could reduce their fuel expenses. 

Purchase cost was perceived as the main disadvantage of EVs by the three communities. They stated that the 

higher purchase cost limits equal access for all, compared to the more affordable cost of ICEVs. Additional 

disadvantages noted by participants related to their lack of knowledge regarding an EV’s driving range under 

normal and congested conditions, charging time and costs, maintenance costs, and charging station locations. 

These unknowns limited their ability to make informed decisions about whether to buy EVs. Participants from 

Chihuahuita also noted that, as a historical district, the city would not allow infrastructure modifications in their 

neighborhood such as installing charging stations. This restriction was perceived as a disadvantage of EV use. 

Regarding positive sentiments on the benefits and advantages of EVs, the three communities expressed only two 

opinions: (1) EVs help the environment by reducing fuel emissions and (2) EVs can be a cost-effective technology 

due to fuel expense savings. Participants wanted to learn more about the actual monetary benefits of EVs and the 

time frame for the return on investment. 

Beyond considering advantages or disadvantages of EV adoption, participants from the three communities 

expressed mostly concerns and inquiries about EVs that they were not able to articulate because they lacked 

information. Safety drew particular interest from participants with questions regarding whether it is safe to charge 

more than one vehicle at home, whether batteries can affect cellular phones or vice versa, and whether it is safe to 

one’s health to spend long periods of time inside an EV while charging. Regarding battery safety, the main 

concerns included whether high or low temperatures affected battery performance and life span and specifically 

whether batteries would be safe and not “explode” under the extreme heat temperatures in El Paso. They also 

questioned whether using or being close to an EV battery affected human health in the long term and whether 

batteries would be safe for pacemaker users. 

Participants from the three communities had the same general questions about EVs, relating to the different 

charging options in the marketplace and their costs, maintenance requirements, safety, and environmental 

benefits. Regarding vehicle types available in the marketplace, they wanted to know why EVs cost more than ICEVs 

and what components or features make different EVs cost more than others. Participants also asked if EV repair 

shops are available in the city or limited to EV dealerships, if EVs require more frequent maintenance, and if EV 

repairs and insurance will cost more than ICEV repairs and insurance. They also inquired about EV batteries, 

including their types, maintenance, life spans, and replacement costs. Regarding home chargers, their main 

concerns related to available charging levels, purchase and installation costs, life spans, electricity consumption 

rates and costs, and installation requirements (i.e., regular electrician vs. specialized electrician). They also asked if 

a home charger was safer and faster than a public ChSs and asked what happens to both chargers and batteries 

once they complete their life span. 

Participants from the three communities had other similar concerns regarding whether EVs are safe at high 

speeds, whether EVs are as safe as ICEVs in a car crash, whether EVs are at a lower risk of explosion in an accident 

compared to ICEVs, whether EVs offer new technologies like contact and movement sensors to help prevent 

accidents, whether EVs can be driven autonomously if a driver passes out or has a heart attack, and whether EVs 

safe for blind and deaf pedestrians given their quiet operation. 
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Knowledge and Perceptions of EV Purchases and Incentives 
Regarding EV purchase (Section III of Table 14), participants from Montana Vista and Anthony were generally 

unsure about EV technology mainly due to their high initial cost and the lack of information regarding the different 

EV options and benefits. Participants from Chihuahuita showed the most interest in EVs. However, their interest 

waned when they considered the initial purchase cost of EVs (they felt they could not afford them) and historical 

district restrictions that would prevent a public charging station from being installed in their neighborhood. They 

had no knowledge that a public charging station already existed less than one mile from their neighborhood. 

Regarding EV purchases, the Montana Vista participants had questions about the availability of electric heavy-duty 

pickups in the marketplace, including their maximum payload/towing capacity, maximum travel distance on a 

single charge at full payload capacity, and costs. These participants also had questions regarding the availability of 

insurance and road assistance. Participants from the three groups also wanted to learn how to calculate the actual 

costs/benefits of owning an EV and the associated savings on fuel expenses, especially for long-distance work trips. 

Ultimately, as previously mentioned, initial cost was the main limitation expressed by the participants in the three 

communities. No participant had any knowledge about federal tax credits or state and local incentives and rebates. 

This topic generated significant interest among all participants and improved their perceptions of EVs when 

presented as an affordable option for them, given the available incentives and rebates. Participants wanted to 

know what the maximum incentive amount is based on, which vehicles are eligible for the maximum amount, how 

the incentive applied, whether incentives are applicable for retirees, whether more than one incentive can be 

applied per household, whether used EVs are available for purchase, and whether ICEVs can be traded in for EV 

purchase. 

Knowledge and Perceptions of EVs, ChSs, and ERWs 
The last topic discussed was participant knowledge and perceptions of EVs, ChSs, and ERWs (Section IV of Table 

14). Although the three communities had knowledge about public ChSs in El Paso, participants from Anthony and 

Chihuahuita did not know the specific number of stations available or their location. Only the participants from 

Montana Vista knew of some locations, but these stations were far from their homes. None of the participants 

from the three communities had knowledge of the different charging levels (e.g., Level 2 or DC fast charging) 

currently available in El Paso, or the charging times or costs. Also, none of the participants had knowledge of 

Internet applications or search engines that can be used to find locations of public ChSs. 

Perceptions and opinions about having ChSs installed in their neighborhoods varied. Participants from the rural 

communities of Anthony and Montana Vista, in far west and far east El Paso County, respectively, were receptive 

and saw benefits to having ChSs installed in their neighborhood because they currently do not have any nearby. 

They felt that these installations could keep them from driving long distances to charge an EV, if they chose to 

purchase one, and could promote EV adoption in their communities, contributing to a decrease in traffic pollution 

as EV adoption increases. Their concerns about ChSs included cost responsibilities for station installation and 

maintenance and potential electricity supply issues the community if new stations are installed. 

The participants from Montana Vista asked if the ChS installations would result in more emissions from electricity 

generation at the power plant located near their homes. On the other hand, participants from Anthony were 

concerned whether having ChSs in their neighborhoods could cause more traffic issues because they already 

struggle with traffic from the interstate, gas stations, trailer rest stops, commercial areas, and schools nearby. 

Participants from Chihuahuita reiterated that EVs are unaffordable to most members in their community and that 

public ChS installations are prohibited because of their historic district restrictions. They also reported feeling 

uncomfortable or unsafe about having “random strangers” coming to their small neighborhood to use the station, 

especially at night. 
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The topic of ERWs inspired the greatest interest. ERWs aim to replace charging stations with inductive embedded 

charging elements in the pavement, allowing vehicles to wirelessly charge as they drive or park on electrified 

roadways 83. This last section describes the perceptions, opinions, and knowledge of ERWs in URCs and considers 

their willingness to have this technology installed in their neighborhoods. None of the communities had previously 

heard about the electrification of roadways, which generated diverse perceptions and concerns in line with the 

specific needs of each group. 

General perceptions of ERWs were positive among participants for their ability to eliminate the need for public 

ChSs and driver range anxiety, but participants expressed reservations about the timing of implementation given 

the state of EV adoption. The three communities agreed that promoting and making EVs accessible to all, including 

their URCs, should be prioritized before investing in roadway electrification, considering the low percentage of EVs 

in the market currently compared to ICEVs. The participants expressed concerns about the costs, health effects, 

and safety of ERWs. Cost-related questions included who will assume construction and maintenance cost of ERWs, 

whether ERWs construction will increase property taxes, and whether ERWs will be freely accessible or include an 

access fee. Most concerns about human health related to ERW safety for vulnerable users, including cancer 

survivors, people undergoing chemotherapy, people with pacemakers, and pregnant or lactating women. 

Additional safety concerns considered ERW safety during rainstorms, flooding, and extreme heat/freezing 

temperatures. Other concerns related to the life span of an ERW, electrification impacts on ICEVs, and safe 

circulation of specialized ICEVs such as cranes or ambulances to assist in road accidents. 

Regarding EWRs installed in their neighborhoods, participants from Chihuahuita considered it unnecessary 

because none of their residents could afford an EV currently and such installations may be limited by their historic 

district restrictions. Participants from Montana Vista and Anthony showed mixed attitudes toward EWRs. They 

expressed concerns about electrification, including whether electrification would cause community electricity 

outages, and whether electrification construction and maintenance would cause lengthy roadway closures and 

traffic congestion as the highway extension currently does. Participants from Montana Vista suggested that after 

the number of EVs in El Paso increased considerably, electrification could begin by focusing only on highways and 

main roads. 

Conclusions and Recommendations 

In this project, we proposed a method for tracking energy sources by identifying the marginal generators and their 

marginal generation to meet an increase in demand. The aim of the proposed optimization model was to 

determine the exact amount of power being supplied by each generator due to an increase in generation at a 

certain location. A unit commitment optimization model was utilized to determine marginal generators and 

binding transmission lines. Then, the marginal generation was calculated and used to determine the amount of 

power being produced to serve a load that is increased at a certain bus. The model described in this study 

considers the time of operation and calculates the cost for meeting the increase in load at each bus and at 

different times. The proposed tracking system was examined through simulations based on the RTS-96 with a 24-

hour period of operation. The results showed that the sources of electricity generation can be accurately tracked in 

a spatial-temporal manner using the proposed optimization model. The model can be solved quickly with high 

computational efficiency, making it possible to run this system using standard computational hardware.  

A two-step method to evaluate the impact of a D-FACTS on marginal emissions in a realistic test system in a 

spatial-temporal manner was proposed in this project. Using this method, D-FACTS devices were first optimally 

allocated in a transmission network using a multi-objective optimization model. The model considers the cost of 

operating the system, the D-FACTS investment cost, and the GWP when solving the problem. An MOEA was 

utilized to solve the problem with high computational efficiency. In addition, UC and ED models were used to 

identify marginal generators and binding transmission lines based on the results of the D-FACTS allocation. These 
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parameters were used in the proposed optimization problem with the aim to calculate the exact power produced 

by each marginal generator to meet an increase in load at each location. This allowed the program to discern the 

magnitude and origin of the emissions produced by the demand increase, known as the MEF. The models were 

implemented on a test system partially based on the RTS-96. This new test system was established to mirror the 

geographic locations of each substation in the city of El Paso, Texas. In addition, the transmission network topology 

was mapped to the El Paso Electric service territory. The models were used in conjunction with this test system to 

show the benefits of D-FACTS devices on real electric grids. The results showed that the implementation of D-

FACTS devices on the test system can reduce transmission congestion, and thus, emissions. The findings showed a 

notable reduction in the GWP and marginal emissions of up to 16 percent, compared to the absence of these 

devices. This optimization problem showed how the use of a D-FACTS in a power system can be beneficial to the 

reduction of GHG emissions. This tool can be valuable for decision-makers to optimally allocate D-FACTS devices to 

reduce emissions and operating costs of the grid. 

A method for allocating EV charging stations by evaluating the cost of meeting the increase in demand and the 

emissions that are produced at these locations was also proposed in this project. Using this method, the marginal 

generators and their marginal generation were first identified. The optimization model then determined the exact 

amount of power utilized by these generators to meet the increase in demand from EV chargers and calculated the 

MEFs and LMPs accordingly. By analyzing the MEFs and LMPs over a desired period of time, EV charging station 

locations can be identified to minimize the power system operating costs and environmental impacts. The 

proposed method was implemented on a modified RTS-96 with transmission congestion, and the results showed 

that the MEFs and LMPs varied both spatially and temporally. Based on the results, three potential locations for EV 

charging station installations were identified. Installing EV charging stations at these locations can mitigate the 

environmental impacts of the system and reduce the cost for power system operations.  

Lastly, a study on public opinions regarding EVs was carried out in this project. This study helped understand the 

perceptions, opinions, and knowledge of EVs, public EV ChSs, and EWRs in URCs in both urban and rural areas in 

the Paso del Norte Region. Results from the focus groups provided valuable information that can help to increase 

equity and inclusion as EV adoption increases, bridging engineering with social and environmental justice. In 

engineering, these considerations must be a part of any design criteria that involves deployment of technologies 

within communities. If the needs and concerns of the communities are not understood and addressed through 

outreach and education, it will not be possible to increase adoption of EVs. Additionally, this study provided a 

foundation that can be used to choose locations for the deployment of electrified technology based on the 

resilience of the power grid and the public perceptions of infrastructure development. 

The results showed that URCs have remarkable interest in EVs, ChSs, and ERWs. Most participants showed some 

knowledge of EVs, lesser knowledge of ChSs, and no knowledge of ERWs. Results also indicated an evident gap of 

essential knowledge of EV technology in URCs, which served as the main barrier to widespread EV diffusion and 

adoption. Given the fact that most URC residents lacked EV technology information, they expressed the need to 

have their doubts and concerns clarified before even considering the purchase of an EV. 

This study provided evidence that the markets in URCs are all different, and concerns about EVs, ChSs, and EWRs 

are diverse, based essentially on the specific needs of each community. To increase EV adoption in URCs, 

comprehensive outreach and education that is easy to access and tailored to each community must be provided 

because one size does not fit all. Information that is lacking varies in degree by community but generally includes 

the following: 

• Types of EVs and their benefits and costs. 

• Government incentives and tax rebates available to inclusive and diverse URCs. 

• Locations and charging costs of public ChSs. 



 

36 
 

• Home charging stations and purchase rebates that could help reduce upfront costs. 

• Environmental and health effects and benefits of roadway electrification. 

The provision of knowledge and understanding of EVs is an essential step in advocating EVs as an accessible 

technology. This outreach helps address the public’s main adoption barriers, increases public interest, and 

encourages adoption for all, including historically minoritized populations. In the same manner, it prepares the 

market for the future of electrified infrastructure. This step also raises awareness in bridging the gap between 

higher engineering education and community outreach when planning and developing equitable transportation 

infrastructure, including ChSs and ERWs. This methodology showed that fostering equity and social and 

environmental justice in engineering education—by taking into account public perceptions and needs and 

including underrepresented groups during the process of planning and developing public transportation 

infrastructure—is extremely important. 

Outputs, Outcomes, and Impacts 

Although EVs do not generate emissions by themselves, the electric power consumed by EVs is not completely 

emission-free. In this project, we developed models to evaluate the locational marginal emissions from power 

systems. LMEs can be used to analyze the emissions induced by EVs and facilitate the analysis of the 

environmental impacts of EVs. We also considered the emissions induced by EV charging in the optimal allocation 

of EV charging stations. Additionally, public opinions on EV and EV charging were analyzed. The results revealed 

the concerns of groups of people with different socioeconomic statuses and shed light on the concerns that need 

to be addressed in the adoption of EVs. Four papers were published from this project and two papers are under 

preparation. This project supported two graduate students—one student pursuing their master’s degree and one 

student pursuing their doctoral degree—in their work toward their thesis or dissertation. Additionally, the 

students and principal investigators of this project were actively involved in outreach activities that enhanced 

public knowledge of EVs. 

Research Outputs, Outcomes, and Impacts 
• Peer-reviewed publications include the following: 

o Kenji Santacruz and Yuanrui Sang, “Analyzing the Global Warming Potential and Human Toxicity 

Potential on a Spatial-Temporal Basis in an Electricity Market,” manuscript under preparation. 

o Kenji Santacruz and Yuanrui Sang, “Tracking the Source of Marginal Electricity Generation on a 

Spatial-Temporal Basis in an Electricity Market,” manuscript under preparation. 

• Conference papers include the following: 

o Eduardo Castillo, Kenji Santacruz, Haveeair Caballero, and Yuanrui Sang, “Reducing Marginal 

Emissions in Power Systems with Distributed Flexible AC Transmission Systems,” in Proceedings of 

The 55th North American Power Symposium, Asheville, NC, October 2023. 

o Liliana Lozada-Medellin, Ivonne Santiago, and Yuanrui Sang, “Increasing Equity in Access to Electric 

Vehicles and Electrified infrastructure through Perceptions, Opinions and Knowledge of 

Underrepresented Communities in the Paso del Norte Region,” 2023 ASEE Annual Conference & 

Exposition, Baltimore, MD, June 2023. 

o Kenji Santacruz and Yuanrui Sang, “Environmentally Aware Allocation of Electric Vehicle Charging 

Stations by Analyzing Locational Marginal Emissions,” in Proceedings of The 54th North American 

Power Symposium, Salt Lake City, UT, October 2022.  
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o Kenji Santacruz and Yuanrui Sang, “Tracking the Source of Marginal Electricity Generation on a 

Spatial-Temporal Basis in an Electricity Market,” in Proceedings of The 53rd North American Power 

Symposium, College Station, TX, November 2021. 

• Presentations at conferences and technical meetings include the following: 

o Liliana Lozada-Medellin, Isabel Lopez, Ivonne Santiago, and Yuanrui Sang, “Disparities, Perceptions, 

Opinions, and Knowledge of the Electrified Technology in Underrepresented Communities in the Paso 

del Norte Region,” Transportation Research Board Annual Meeting and Technology Showcase, 

Washington, D.C., January 8–12, 2023. 

o Kenji Santacruz and Yuanrui Sang, “Environmentally Aware Allocation of Electric Vehicle Charging 

Stations by Analyzing Locational Marginal Emissions,” The ASPIRE NSF ERC Annual Meeting, October 

2022. 

o Kenji Santacruz and Yuanrui Sang, “Tracking Renewable Energy Consumption in an Electricity 

Market,” UTEP COURI Spring 2021 Symposium, May 2021. 

o Kenji Santacruz and Yuanrui Sang, “Tracking Renewable Energy Consumption in an Electricity 

Market,” 2021 Texas Undergraduate Research Day at The Capitol, February 2021.  

Technology Transfer Outputs, Outcomes, and Impacts 
• An algorithm to analyze MEFs was developed. The algorithm was able to analyze the MEFs of power 

systems in a spatiotemporal manner.  

• Four papers were published and two papers are under preparation. 

Education and Workforce Development Outputs, Outcomes, and Impacts 
• A doctoral student in civil engineering at the University of Texas—El Paso (UTEP) was supported by this 

project as a research assistant.  

• A master’s student in electrical and computer engineering at UTEP was supported by this project as a 

research assistant. 

• The project was conducted as part of a doctoral dissertation in the civil engineering program at UTEP. 

• The project was conducted as part of a master’s thesis in the electrical and computer engineering 

program at UTEP. 

• Training and education on obtaining IRB approval, carrying out focus groups, and administering 

questionnaire surveys were conducted. 

• Training and education on the usage of qualitative software, MAXQDA, were conducted.  

• Training and education in C++ programming, use of the Gurobi Optimization Solver, and analysis of power 

system emissions were conducted.  
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