## Measuring Exposure of Urban Cyclists to PM2.5 Using an Instrumented Bike

Kaitlyn Schaffer, April Gadsby Dr. Kari Watkins, and Dr. Christopher LeDantec









#### Seeing Like a Bike (SLaB)

Environmental

Temperature/

Humidity

AV

Barometer

Traffic

GPS 3D

Road

Accelerometer 3D Gyroscope 3D

Magnetometer Microphone array

Ozone Nitrogen Dioxide Sulfur Dioxide Carbon Monoxide Particulate Matter 2x Lidar Rangefinders 3x Ultrasonic Rangefinders



#### **Motivation for Air Quality Project**

- Pollutant exposure can be vary significantly depending on mode and route
- Cyclists are vulnerable to particulate matter
- Prolonged or repetitive PM exposure has many adverse health impacts
  - Reduced lung function, asthma, heart attack, and stroke
- Limited research to understand which types of cycling infrastructure may be better or worse for cyclists' health based on PM exposure



#### **Objective for Air Quality Project**

To assess the feasibility of using an instrumented bicycle equipped with low-cost air quality sensors to monitor the PM<sub>2.5</sub> exposure of cyclists in Atlanta, Georgia





























#### **GRIMM** High Quality, Research Grade Air Quality Sensor







**SLaB Box** Custom collection of environmental sensors





#### **GRIMM** High Quality, Research Grade Air Quality Sensor

**Purple Air** Creating an Air Quality Network using the IoT







SLaB Box Custom collection of environmental sensors





#### **GRIMM** High Quality, Research Grade Air Quality Sensor

Purple Air Creating an Air Quality Network using the IoT









#### **Sensor Selection**

- Selected for low-cost and small size
- Facilitated data collection with bicycle
- Had the highest correlation with the expensive commercial-grade sensors used by the EPA







#### **Sensor Calibration**

- Stationary comparison of GRIMM 1.109 aerosol spectrometer and Plantower PMS5003 sensors
- Mobile comparison of GRIMM 1.109 aerosol spectrometer and Plantower PMS5003 sensors



#### **Sensor Testing Instrumented Bicycle**



#### PMS 5003 (x2)





GPS + GoPro



#### **Stationary Comparison**



Stationary comparison test configuration



#### PM2.5 concentrations recorded by GRIMM 1.109 and PMS5003 sensors



#### **Mobile Comparison**



Difference between GRIMM 1.109 and PMS5003 sensor readings during mobile monitoring



#### **Sensor Calibration Findings**

- Stationary comparison
  - Produced similar trends
  - Differed in magnitude of readings and quickness of response
- Mobile comparison
  - Agreed for most distances with some short distances of large variations
  - Low-cost sensors were concluded to be representative of observed patterns



#### **Data Collection Instrumented Bicycle**



Instrumented bicycle with identified front and rear components



Plantower PMS5003 Digital universal particle concentration sensor



#### **Data Collection**

- Monitor PM2.5 along routes composed of different types of cycling infrastructure with an instrumented bicycle
- Map PM2.5 exposure of the different routes to compare types of cycling infrastructure









23 Georgia





Georgia Tech



26 Georgia



Georgia Tech



28 Georgia



Georgia Tech



30 Georgia



Georgia Tech



32 Georgia



Georgia Tech





Georgia Tech

## Methodology

- Participants elected to ride instrumented bicycle on one of four routes
- Each route was completed by at least 5 participants
- 27 runs → 24,000 data points
- Recorded start time, background PM2.5, temperature, wind speed, wind direction, relative humidity



## Methodology

- Corrected for background PM2.5 concentrations
- Segmented routes
- Assigned cycling infrastructure type, GDOT roadway functional classification, and land use type to each segment







| Ro        | ute 4                     |                          |           | - (F) - 2  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------|---------------------------|--------------------------|-----------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | areas and a second second | ni trate                 |           | 1932       | Factor and SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Г         |                           |                          | PL THE PL | -          | Annual Annua<br>Annual Annual |
| Indexes   |                           |                          |           |            | - And                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| erriter ( | 5                         | насти                    |           |            | WORKS 199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|           |                           | Johnson an<br>Share of H |           | a superior |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| noven     |                           | 17/1/2                   |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| Route       | Average<br>PM <sub>2.5</sub> (µg/m³) | Minimum<br>PM₂.₅ (µg/m³) | Maximum<br>PM <sub>2.5</sub> (µg/m <sup>3</sup> ) | Standard<br>Deviation |
|-------------|--------------------------------------|--------------------------|---------------------------------------------------|-----------------------|
| With Backg  | round Correctio                      | on                       | 111                                               |                       |
| 1           | 1.82                                 | -5.48                    | 18.96                                             | 4.18                  |
| 2           | 2.42                                 | -5.22                    | 25.75                                             | 3.83                  |
| 3           | 2.17                                 | -6.56                    | 13.72                                             | 5.17                  |
| 4           | -1.26                                | -5.79                    | 11.78                                             | 3.52                  |
| Without Bac | kground Corre                        | ction                    |                                                   |                       |
| 1           | 7.60                                 | -1.13                    | 25.57                                             | 4.02                  |
| 2           | 9.45                                 | 1.00                     | 32.95                                             | 4.55                  |
| 3           | 8.53                                 | 1.24                     | 22.86                                             | 5.67                  |
| 4           | 3.80                                 | -1.19                    | 16.88                                             | 3.24                  |



38

PM<sub>2.5</sub> with Background Correction

~ × 0 \* × 8 \* 2 \* \*

## Linear Regression for PM<sub>2.5</sub>

| Variable               | Units | Coefficient |     | Р      |
|------------------------|-------|-------------|-----|--------|
|                        |       |             |     |        |
| Intercept              | N/A   | -0.17       |     | 0.898  |
| Weekday or Weekend     | Dummy | 3.33        | *** | <0.001 |
| Time of Day            | Dummy | -0.23       |     | 0.215  |
| Temperature            | °F    | 0.04        | *   | 0.012  |
| Wind Speed             | mph   | -0.12       | *** | <0.001 |
| Relative Humidity      | %     | 0.12        | *** | <0.001 |
| Cycling Infrastructure | Dummy | -0.58       | •   | 0.056  |
| Minor or Major Road    | Dummy | -1.36       | *** | <0.001 |
| Commercial Land Use    | Dummy | 2.72        | *** | <0.001 |

N=900, R<sub>2</sub> = 0.259



#### Segmented PM<sub>2.5</sub> Concentrations



#### Conclusions

- Lower PM<sub>2.5</sub> exposure observed on designated cycling infrastructure and roadways with lower traffic volumes
- Land use, specifically commercial areas, one of the most significant indicators of cyclists' PM<sub>2.5</sub> exposure
  - Demand for bicycle infrastructure in cities is greatest in commercial areas, where desirable restaurants and businesses are present
- Cyclists' PM<sub>2.5</sub> exposure more impacted by meteorological variables that lead the background concentration to be higher along the entire route than roadway/traffic characteristics along the route
- Findings in alignment with previous instrumented bicycle studies and pollutant exposure studies of other modes of transportation



# **Continuing SLaB Research - Stress and Speed (using GPS)**

#### **Causes of Stress**

- Speed Differential
  - Delft = 18%
  - Atlanta = 34%

#### **Stress Reducers**

- Speed Differential
  - Delft = 29%
  - Atlanta = 41%



Geo

#### **Continuing SLaB Research - Close-pass Events (using LIDAR)**

|         |     |          |                           | "Most drivers don't seem to notice |                 |
|---------|-----|----------|---------------------------|------------------------------------|-----------------|
| Delft   | Bus | Distance | Rider Type                | cyclists"                          | Stress Rating   |
| 1       | No  | 850 mm   | Strong & Fearless         | Disagree                           | Low             |
| 2       | No  | 720 mm   | Enthused & Confident      | Disagree                           | Low             |
| 3       | Yes | 580 mm   | Comfortable, but Cautious | Strongly Disagree                  | Moderately Low  |
| 4       | No  | 670 mm   | Comfortable, but Cautious | Strongly Disagree                  | Moderately Low  |
| 5       | Yes | 620 mm   | Enthused & Confident      | Disagree                           | Low             |
| 6       | Yes | 610 mm   | Comfortable, but Cautious | Strongly Disagree                  | Low             |
| 7       | Yes | 600 mm   | Enthused & Confident      | Strongly Disagree                  | Moderately high |
| Atlanta |     |          |                           |                                    |                 |
| 1       | No  | 710 mm   | Comfortable, but Cautious | Strongly agree                     | Moderately high |
| 2       | No  | 900 mm   | Enthused & Confident      | Agree                              | High            |
| 3       | No  | 710 mm   | Strong & Fearless         | Agree                              | Moderately low  |
| 4       | No  | 700 mm   | Enthused & Confident      | Strongly agree                     | Moderately low  |

Specific Infrastructure Stressors = Narrow (Delft), No Bicycle Facility (Atlanta)

#### **Continuing SLaB Research - Eye Tracking**







Georgia Tech

44

## **Thank You!**

Dr. Kari Watkins Frederick Law Olmsted Associate Professor Civil & Environmental Engineering <u>kari.watkins@ce.gatech.edu</u>

Kaitlyn Schaffer

Research done for Georgia Tech MS thesis in CEE Now working at Kittelson & Associates <u>kschaffer@kittelson.com</u>



